Click here to download

The emergy systems-based approach. Prospects for an integrated sustainability assessment of civil works and urban plans
Journal Title: RIV Rassegna Italiana di Valutazione 
Author/s: Silvio Cristiano 
Year:  2018 Issue: 71-72 Language: Italian 
Pages:  24 Pg. 149-172 FullText PDF:  791 KB
DOI:  10.3280/RIV2018-071008
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

The emergy systems-based approach. Prospects for an integrated sustainability assessment of civil works and urban plans”. In order to face and tackle the great changes of this century, the emergy systems-based approach is here presented. Rooted in systems thinking and with strong geobiophysical foundations, it can be considered as an effective support to integrated sustainability assessments. The concept of emergy, upon which it is based, allows to go beyond the mere monetary assessment, focused on the value bestowed by final users. It takes into account the real resources (energy, matter, etc.) that have been invested upstream. The illustration of the approach features explains the potentials of an emergy systems-based assessment, with specific reference to design and planning, for which the approach here illustrated is innovative. Prospects and features of structural upstream integration can be inferred from different experiences, namely ex post or in itinere evaluations, from single projects to urban metabolism.
Keywords: Systems Thinking; Emergy; Integrated Assessment; Sustainability; Civil Works; Urban Planning.

  1. Cristiano, S. (in preparazione). Systemic assessment for sustainable design. A complex non-profit hospital in a bioclimatic building in the Saharan-Sahelian region.
  2. Cristiano, S., & Gonella, F. (2017). Tecnologie costruttive, limiti ecologici e sostenibilità sistemica. L’analisi emergetica per valutare un progetto edilizio tra Sahara e Sahel. Progetto Re-Cycle, 4, Il Prato Publishing House, Saonara (PD) -- (ISSN: 2465-1400,
  3. Cristiano, S., & Gonella, F. (2019a). Learning From Hybrid Innovative-Vernacular Solutions in Building Design: Emergy Analysis of Sudanese Energy-Saving Technologies. Journal of Environmental Accounting and Management, 7(2), 209-223.
  4. Cristiano, S., & Gonella, F. (2019b). To build or not to build? Megaprojects, resources, and environment: an emergy synthesis for a systemic evaluation of a major highway expansion. Journal of Cleaner Production, 223, 772-789. -- []
  5. Georgescu-Rogen, N. (1971). The entropy law and the economic process. Harvard University, Harvard.
  6. Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner production, 114, 11-32. -- []
  7. Gonella, F., Cristiano, S., & Spagnolo, S. (2019). Emergy as a tool for an integrated knowledge. In: Brown, M.T., S. Sweeney, D.E. Campbell, S. Huang, T. Rydberg, and S. Ulgiati (eds) (2019). Emergy Synthesis 10: Theory and Applications of the Emergy Methodology. Proceedings of the 10th Biennial Emergy Conference. Center for Environmental Policy, University of Florida, Gainesville. 216 pages.
  8. Gorz, A., & Bosquet, M. (1977). Écologie et liberté. Éditions Galilée. Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T., & Eichhorn, W. (2001). The Need to Reintegrate the Natural Sciences with Economics: Neoclassical economics, the dominant form of economics today, has at least three fundamental flaws from the perspective of the natural sciences, but it is possible to develop a different, biophysical basis for economics that can serve as a supplement to, or a replacement for, neoclassical economics. BioScience, 51(8), 663-673.
  9. International Standard Organisation. (1997). ISO 14040: Environmental Management, Life Cycle Assessment, Principles and Framework. ISO.
  10. International Standard Organisation. (2006). ISO 14044: Environmental Management, Life Cycle Assessment, Requirements and Guidelines. ISO.
  11. Jevons, W.S. (1865), The coal question: An inquiry concerning the progress of the nation, and the probable exhaustion of the coal- mines. Macmillan.
  12. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. -- []
  13. Klein, N. (2015). This changes everything: Capitalism vs. the climate. Simon and Schuster.
  14. Leonard, A. (2007). Story of stuff, referenced and annotated script. Journal of Occupational and Environmental Health, 13(1).
  15. Adler, P. S. (2015). Book Review Essay: The Environmental Crisis and Its Capitalist Roots: Reading Naomi Klein with Karl Polanyi—Naomi Klein: This Changes Everything: Capitalism vs. the Climate. Administrative Science Quarterly, 60(2), np13-np25. -- []
  16. Aydin, E., Kok, N., & Brounen, D. (2017). Energy efficiency and household behavior: the rebound effect in the residential sector. The RAND Journal of Economics, 48(3), 749-782.
  17. [] Brown, M. T., & Buranakarn, V. (2003). Emergy indices and ratios for sustainable material cycles and recycle options. Resources, Conservation and Recycling, 38(1), 1-22.
  18. Brown, M. T., & Cohen, M. J. (2008). Emergy and network analysis. In Jörgensen, S.E., & Fath, B.
  19. (Eds.) (2008). Encyclopedia of Ecology. Elsevier, Amsterdam, Netherlands.
  20. Leonard, A. (2013). The story of solutions. The Story of Stuff Project -- website,, 85-108.
  21. Meadows, D. H. (2008). Thinking in systems: A primer. Chelsea Green Publishing.
  22. Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. Universe Books, New York.
  23. Meillaud, F., Gay, J. B., & Brown, M. T. (2005). Evaluation of a building using the emergy method. Solar energy, 79(2), 204-212. -- []
  24. Ministero delle Infrastrutture e dei Trasporti (2018). Decreto 17 gennaio 2018. Aggiornamento delle «Norme tecniche per le costruzioni».
  25. Monat, J. P., & Gannon, T. F. (2015). What is systems thinking? A review of selected literature plus recommendations. American Journal of Systems Science, 4(1), 11-26.
  26. Odum, H. T. (1971). Environment, Society and Power. John Wiley and Sons, New York.
  27. Odum, H. T. (1983). Systems Ecology; an introduction.
  28. Odum, H. T. (1994). Ecological and general systems: an introduction to systems ecology. Colorado University Pres, Niwot.
  29. Odum, H.T. (1996). Environmental accounting: emergy and environmental decision making. Wiley, New York.
  30. Leonard, A. (2010). The story of stuff: How our obsession with stuff is trashing the planet, our communities, and our health-and a vision for change. Simon and Schuster.
  31. Odum, H. T. (2007). Environment, power, and society for the twenty-first century: the hierarchy of energy. Columbia University Press.
  32. Odum, H.T., & Peterson, L.L. (1972). Relationship of energy and complexity and planning. Architectural Design, 10, 624–629.
  33. Pantaleo, R., & Strada, G. (2011). Centro pediatrico di Emergency in Darfur. Domus 949, luglio/agosto 2011.
  34. Peterson, L. L. (2004). Comments on “Relationship of energy and complexity and planning architectural design”: [Architectural Design 10 (1972) 624–629]. Ecological modelling, 178(1), 167-168. [DOI 10.1016/j.ecolmodel.2003.12.028]
  35. Reza, B., Sadiq, R., & Hewage, K. (2014). Emergy-based life cycle assessment (Em- LCA) of multi-unit and single-family residential buildings in Canada. International Journal of Sustainable Built Environment, 3(2), 207-224. -- []
  36. Sorrell, S., (2009), Jevons’ Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37, 1456- 1469. -- []
  37. Srinivasan, R., & Moe, K. (2015). The hierarchy of energy in architecture: emergy analysis. Routledge.
  38. Sweeney, S., Cohen, M. J., King, D., & Brown, M. T. (2007). Creation of a global emergy database for standardized national emergy synthesis. Emergy synthesis, 4, 483-497.
  39. Tiezzi, E., Marchettini, N., & Bastianoni, S. (a cura di) (2009). Impronta Ecologica e analisi eMergetica. Applicazione locale dei nuovi indicatori di sostenibilità ambientale. Edito dalla Provincia di Venezia, Assessorato alle Politiche Ambientali, stampato presso le Grafiche Biesse.
  40. Viglia, S., Civitillo, D. F., Cacciapuoti, G., & Ulgiati, S. (2018). Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecological indicators, 94, 82-99. -- []
  41. Von Bertalanffy, L. (1950). An outline of general system theory. British Journal for the Philosophy of science.
  42. Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23-29.
  43. Von Bertalanffy, L. (1968). General System Theory. New York, Braziller.
  44. Yi, H., & Braham, W. W. (2015). Uncertainty characterization of building emergy analysis (BEmA). Building and Environment, 92, 538-558. -- []
  45. Yi, H., Srinivasan, R. S., & Braham, W. W. (2015). An integrated energy–emergy approach to building form optimization: Use of EnergyPlus, emergy analysis and Taguchi-regression method. Building and Environment, 84, 89-104. -- []
  46. Gonella, F., Elia, C., Cristiano, S., Spagnolo, S., & Vignarca, F. (2017). From Head to Head: An Emergy Analysis of a War Rifle Bullet. Peace Economics, Peace Science and Public Policy, 23(2). -- []
  47. Pulselli, R. M., Simoncini, E., Pulselli, F. M., & Bastianoni, S. (2007). Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy and buildings, 39(5), 620-628. -- []
  48. Brown, M. T., & Ulgiati, S. (2011). Understanding the global economic crisis: A biophysical perspective. Ecological Modelling, 223(1), 4-13. [
  49. Brown, M. T., & Ulgiati, S. (2016a). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126-132. -- []
  50. Brown, M. T., & Ulgiati, S. (2016b). Emergy assessment of global renewable sources. Ecological Modelling, 339, 148-156. -- []
  51. Calvo, G., Valero, A., & Valero, A. (2017). Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling, 125, 208-217.
  52. Capra, F. (1996). The web of life: A new scientific understanding of living systems. Anchor.
  53. Capra, F., & Luisi, P. L. (2014). The systems view of life: A unifying vision. Cambridge University Press.
  54. Checkland, P. (1999). Systems thinking, systems practice.
  55. Commoner, B. (1971). The closing circle: nature, man, and technology.
  56. Corbett, C. J., & Muthulingam, S. (2007). Adoption of voluntary environmental standards: The role of signaling and intrinsic benefits in the diffusion of the LEED green building standards. Available at SSRN 1009294.
  57. Cristiano, S. (2018a). Systemic Assessment for Sustainable Design – LCA- based Emergy synthesis of an EMERGENCY NGO hospital in Sudan. Tesi di Dottorato, Università Iuav di Venezia.
  58. Cristiano, S. (2018b). Systemic Thoughts on Ecology, Society, and Labour. In: Cristiano, S., a cura di (2018). Through the Working Class. Ecology and Society Investigated Through the Lens of Labour. Edizioni Ca’ Foscari, Venezia. [DOI 10.30687/978-88-6969-296-3]

Silvio Cristiano, The emergy systems-based approach. Prospects for an integrated sustainability assessment of civil works and urban plans in "RIV Rassegna Italiana di Valutazione" 71-72/2018, pp. 149-172, DOI:10.3280/RIV2018-071008


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content