Il sistema nervoso autonomico e il nervo vago all’inizio della vita

Titolo Rivista PNEI REVIEW
Autori/Curatori Chiara Viglione, Marco Chiera, Stefano Vecchi, Francesco Cerritelli, Andrea Manzotti
Anno di pubblicazione 2022 Fascicolo 2022/1 Lingua Italiano
Numero pagine 15 P. 38-52 Dimensione file 178 KB
DOI 10.3280/PNEI2022-001004
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Il sistema nervoso autonomico (SNA) gioca un ruolo di rilievo nella regolazione della salute dell’organismo e dei suoi processi di adattamento agli stressor. Tuttavia, spesso viene data poca attenzione ai suoi legami con i sistemi immunitario ed endocrino. Ancor di più, poca attenzione viene data a come l’SNA si sviluppa durante la gestazione e a quali fattori possono interferire con la sua maturazione, nonostante oggi, tramite l’analisi della variabilità della frequenza cardiaca (HRV), è possibile monitorare lo sviluppo dell’SNA persino a livello fetale e prevenire complicazioni potenzialmente letali. Scopo di questo articolo è, pertanto, fornire un quadro della complessità dello sviluppo dell’SNA, con specifici accenni al nervo vago, con particolare attenzione ai fattori ambientali che possono interferire durante lo sviluppo fetale e neonatale, fornendo in conclusione rilevanti spunti per la pratica clinica.;

Keywords:Sviluppo fetale, Sistema nervoso autonomico, Nervo vago, Heart rate variability, Perinatalità, Fattori ambientali.

  1. Antonelli M.C., Frasch M.G., Rumi M., Sharma R., Zimmermann P., Molinet M.S., & Lobmaier S.M. (2022). Early Biomarkers and Intervention Programs for the Infant Exposed to Prenatal Stress. Current Neuropharmacology, 20(1), 94–106. DOI: 10.2174/1570159X1966621012515095
  2. Aplin J.D., Myers J.E., Timms K., & Westwood M. (2020). Tracking placental development in health and disease. Nature Reviews. Endocrinology, 16(9), 479–494
  3. Bonaz B., Sinniger V., & Pellissier S. (2021). Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Frontiers in Neuroscience, 15, 650971.
  4. Borsani E., Della Vedova A.M., Rezzani R., Rodella L.F., & Cristini C. (2019). Correlation between human nervous system development and acquisition of fetal skills: An overview. Brain and Development, 41(3), 225–233.
  5. Brändle J., Preissl H., Draganova R., Ortiz E., Kagan K.O., Abele H., Brucker S.Y., & Kiefer-Schmidt I. (2015). Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development. Frontiers in Human Neuroscience, 9, 147.
  6. Bystrova K. (2009). Novel mechanism of human fetal growth regulation: A potential role of lanugo, vernix caseosa and a second tactile system of unmyelinated lowthreshold C-afferents. Medical Hypotheses, 72(2), 143–146.
  7. Chiera M., Cerritelli F., Casini A., Barsotti N., Boschiero D., Cavigioli F., Corti C.G., & Manzotti A. (2020). Heart Rate Variability in the Perinatal Period: A Critical and Conceptual Review. Frontiers in Neuroscience, 14, 561186.
  8. Conradt E., Crowell S.E., & Lester B.M. (2018). Early life stress and environmental influences on the neurodevelopment of children with prenatal opioid exposure. Neurobiology of Stress, 9, 48–54.
  9. De las Cuevas C., & Sanz E.J. (2006). Safety of Selective Serotonin Reuptake Inhibitors in Pregnancy. Current Drug Safety, 1(1), 17–24. DOI: 10.2174/15748860677525259
  10. DiPietro J.A., Costigan K.A., & Voegtline K.M. (2015). Studies in fetal behavior: revisited, renewed, and reimagined. Monographs of the Society for Research in Child Development, 80(3), vii;1-94.
  11. (2019). Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiology of Aging, 78, 1–17.
  12. Fischer L.A., Demerath E., Bittner-Eddy P., & Costalonga M. (2019). Placental
  13. colonization with periodontal pathogens: the potential missing link. American Journal of Obstetrics and Gynecology, 221(5), 383–392.e3.
  14. Frasch M.G., Shen C., Wu H.-T., Mueller A., Neuhaus E., Bernier R.A., Kamara D., & Beauchaine T.P. (2021). Brief Report: Can a Composite Heart Rate Variability Biomarker Shed New Insights About Autism Spectrum Disorder in School-Aged Children? Journal of Autism and Developmental Disorders, 51(1), 346–356.
  15. Fritze D., Zhang W., Li J.-Y., Chai B., & Mulholland M. (2014). Thrombin Mediates Vagal Apoptosis and Dysfunction in Inflammatory Bowel Disease. Journal of Gastrointestinal Surgery, 18(8), 1495–1506.
  16. Garzoni L., Faure C., & Frasch M.G. (2013). Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero. Frontiers in Integrative Neuroscience, 7, 57.
  17. Goeden N., Velasquez J., Arnold K.A., Chan Y., Lund B.T., Anderson G.M., & Bonnin A. (2016). Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. Journal of Neuroscience, 36(22), 6041–6049.
  18. Gold N., Herry C.L., Wang X., & Frasch M.G. (2019). Fetal cardiovascular decompensation during labor predicted from the individual heart rate: a prospective study in fetal sheep near term and the impact of low sampling rate. arXiv:1911.01304
  19. Goldstein D.S. (2006). Adrenaline and the inner world: an introduction to scientific integrative medicine. Baltimore: Johns Hopkins University Press.
  20. Hemphill J.C., Andrews P., & De Georgia M. (2011). Multimodal monitoring and neurocritical care bioinformatics. Nature Reviews Neurology, 7(8), 451–460.
  21. Hoyer D., Schmidt A., Gustafson K.M., Lobmaier S.M., Lakhno I., van Leeuwen P., Cysarz D., Preisl H., & Schneider U. (2019). Heart rate variability categories of fluctuation amplitude and complexity: diagnostic markers of fetal development and its disturbances. Physiological Measurement, 40(6), 064002. DOI: 10.1088/1361-6579/ab205f
  22. Hutchins E.J., Kunttas E., Piacentino M.L., Howard A.G.A., Bronner M.E., & Uribe R.A. (2018). Migration and diversification of the vagal neural crest. Developmental Biology, 444, S98–S109
  23. Knaepen L., Pawluski J.L., Patijn J., van Kleef M., Tibboel D., & Joosten E.A. (2014). Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring: Perinatal Maternal Stress and Serotonin Signaling. Developmental Psychobiology, 56(5), 885–896
  24. Kozar M., Tonhajzerova I., Mestanik M., Matasova K., Zibolen M., Calkovska A., & Javorka K. (2018). Heart rate variability in healthy term newborns is related to delivery mode: a prospective observational study. BMC Pregnancy and Childbirth, 18(1), 264.
  25. Kruepunga N., Hikspoors J.P.J.M., Hülsman C.J.M., Mommen G.M.C., Köhler S.E., & Lamers W.H. (2020). Development of extrinsic innervation in the abdominal intestines of human embryos. Journal of Anatomy, 237(4), 655–671.
  26. Kumar N., Akangire G., Sullivan B., Fairchild K., & Sampath V. (2020). Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatric Research, 87(2), 210–220.
  27. Lavin J.P. (1982). The effects of epidural anesthesia on electronic fetal heart rate monitoring. Clinics in Perinatology, 9(1), 55–62.
  28. Moore K.L., Persaud T.V.N., & Torchia M.G. (2016). The developing human: clinically oriented embryology (10th edition). Philadelphia, PA: Elsevier.
  29. Morton S.U., & Brodsky D. (2016). Fetal Physiology and the Transition to Extrauterine Life. Clinics in Perinatology, 43(3), 395–407.
  30. Mulkey S.B., & du Plessis A. (2018). The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Seminars in Pediatric Neurology, 28, 29–37.
  31. Mulkey S.B., & du Plessis A.J. (2019). Autonomic nervous system development and its
  32. impact on neuropsychiatric outcome. Pediatric Research, 85(2), 120–126.
  33. Mulkey S.B., Kota S., Govindan R.B., Al-Shargabi T., Swisher C.B., Eze A., Hitchings
  34. L., Russo S., Herrera N., McCarter R., Maxwell G.L., Baker R., & du Plessis A.J. (2019). The effect of labor and delivery mode on electrocortical and brainstem autonomic function during neonatal transition. Scientific Reports, 9(1), 11020.
  35. Nguyen T.A., Chow T., Riggs W., & Rurak D. (2019). Postnatal outcomes in lambs exposed antenatally and acutely postnatally to fluoxetine. Pediatric Research, 85(7), 1032–1040.
  36. Parris K.M., Amabebe E., Cohen M.C., & Anumba D.O. (2021). Placental microbial–metabolite profiles and inflammatory mechanisms associated with preterm birth. Journal of Clinical Pathology, 74(1), 10–18.
  37. Patural H., Pichot V., Flori S., Giraud A., Franco P., Pladys P., Beuchée A., Roche F.,
  38. & Barthelemy J.-C. (2019). Autonomic maturation from birth to 2 years: normative values.
  39. Heliyon, 5(3), e01300.
  40. Peterson L.S., Stelzer I.A., Tsai A.S., Ghaemi M.S., Han X., Ando K., Winn V.D., Martinez N.R., Contrepois K., Moufarrej M.N., Quake S., Relman D.A., Snyder M.P., Shaw G.M., Stevenson D.K., Wong R.J., Arck P., Angst M.S., Aghaeepour N., & Gaudilliere B. (2020). Multiomic immune clockworks of pregnancy. Seminars in Immunopathology, 42(4), 397–412.
  41. Preston R., Crosby E.T., Kotarba D., Dudas H., & Elliott R.D. (1993). Maternal positioning affects fetal heart rate changes after epidural analgesia for labour. Canadian Journal of Anaesthesia, 40(12), 1136–1141.
  42. Ray-Griffith S.L., Wendel M.P., Stowe Z.N., & Magann E.F. (2018). Chronic pain during pregnancy: a review of the literature. International Journal of Women’s Health, 10, 153–164.
  43. Rivolta M.W., Stampalija T., Casati D., Richardson B.S., Ross M.G., Frasch M.G., Bauer A., Ferrazzi E., & Sassi R. (2014). Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model. PLoS ONE, 9(8), e104193.
  44. Roux S.G., Garnier N.B., Abry P., Gold N., & Frasch M.G. (2021). Distance to healthy cardiovascular dynamics from fetal heart rate scale-dependent features in pregnant sheep model of human labor predicts cardiovascular decompensation.
  45. Schlatterer S.D., Govindan R.B., Barnett S.D., Al-Shargabi T., Reich D.A., Iyer S., Hitchings L., Larry Maxwell G., Baker R., du Plessis A.J., & Mulkey S.B. (2022). Autonomic development in preterm infants is associated with morbidity of prematurity. Pediatric Research, 91(1), 171–177.
  46. Sheng J.A., Bales N.J., Myers S.A., Bautista A.I., Roueinfar M., Hale T.M., & Handa
  47. R.J. (2020). The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Frontiers in Behavioral Neuroscience, 14
  48. Tribollet E., Charpak S., Schmidt A., Dubois-Dauphin M., & Dreifuss J.J. (1989). Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. Journal of Neuroscience, 9(5), 1764–1773.
  49. Ulmer Yaniv A., Salomon R., Waidergoren S., Shimon-Raz O., Djalovski A., & Feldman R. (2021). Synchronous caregiving from birth to adulthood tunes humans’ social brain. Proceedings of the National Academy of Sciences, 118(14),
  50. van Bodegom M., Homberg J.R., & Henckens M.J.A.G. (2017). Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Frontiers in Cellular Neuroscience, 11: 87.
  51. Wallingford M.C., Benson C., Chavkin N.W., Chin M.T., & Frasch M.G. (2018). Placental Vascular Calcification and Cardiovascular Health: It Is Time to Determine How Much of Maternal and Offspring Health Is Written in Stone. Frontiers in Physiology, 9, 1044.
  52. Walusinski O. (2014). How yawning switches the default-mode network to the attentional network by activating the cerebrospinal fluid flow: How Yawning Switches the DMN to the Attentional Network. Clinical Anatomy, 27(2), 201–209.

Chiara Viglione, Marco Chiera, Stefano Vecchi, Francesco Cerritelli, Andrea Manzotti, Il sistema nervoso autonomico e il nervo vago all’inizio della vita in "PNEI REVIEW" 1/2022, pp 38-52, DOI: 10.3280/PNEI2022-001004