Click here to download

Large-scale simulations of brain mechanisms: beyond the synthetic method
Journal Title: PARADIGMI 
Author/s: Edoardo Datteri, Federico Laudisa 
Year:  2015 Issue: Language: English 
Pages:  24 Pg. 23-46 FullText PDF:  230 KB
DOI:  10.3280/PARA2015-003003
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

In recent years, a number of research projects have been proposed whose goal is to build large-scale simulations of brain mechanisms at unprecedented levels of biological accuracy. Here it is argued that the roles these simulations are expected to play in neuroscientific research go beyond the "synthetic method" extensively adopted in Artificial Intelligence and biorobotics. In addition we show that, over and above the common goal of simulating brain mechanisms, these projects pursue various modelling ambitions that can be sharply distinguished from one another, and that correspond to conceptually different interpretations of the notion of "biological accuracy". They include the ambition (i) to reach extremely deep levels in the mechanistic decomposition hierarchy, (ii) to simulate networks composed of extremely large numbers of neural units, (iii) to build systems able to generate rich behavioural repertoires, (iv) to simulate "complex" neuron models, (v) to implement the "best" theories available on brain structure and function. Some questions will be raised concerning the significance of each of these modelling ambitions with respect to the various roles played by simulations in the study of the brain.
Keywords: Biological accuracy, Computational neuroscience, Large-scale brain simulations, Models in neuroscience, Simulation methodologies in neuroscience, Synthetic method.

  1. Ananthanarayanan R., Esser S.K., Simon H.D. and Modha D.S. (2009). The cat is out of the bag: cortical simulations with 10^9 neurons, 10^13 synapses. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, C: 1-12.
  2. Bogen J. and Woodward J. (1988). Saving the phenomena. The Philosophical Review, 97, 3: 303-352.
  3. Burgess N., Jackson A., Hartley T. and O’Keefe J. (2000). Predictions derived from modelling the hippocampal role in navigation. Biological Cybernetics, 83, 3: 301-312., DOI: 10.1007/s004220000172
  4. Cordeschi R. (2002). The discovery of the artificial: behavior, mind and machines before and beyond cybernetics. Dordrecht: Kluwer., DOI: 10.1007/978-94-015-9870-5
  5. Cordeschi R. (2008). Steps toward the synthetic method: symbolic information processing and self organization systems in early artificial intelligence. In: Husbands P., Holland O. and Wheeler M., eds. The mechanical mind in history. Cambridge (MA): MIT Press: 219-258.
  6. Craver C. (2007). Explaining the brain: mechanisms and the mosaic unity of neuroscience. New York-Oxford: Clarendon Press., DOI: 10.1093/acprof:oso/9780199299317.001.0001
  7. Datteri E. (2016 forthcoming). Biorobotics. In: Magnani L. and Bertolotti T.W., eds. Springer handbook of model based science. Heildelberg-Berlin: Springer.
  8. Datteri E. and Laudisa F. (2014). Box-and-arrow explanations need not be more abstract than neuroscientific mechanism descriptions. Frontiers in Psychology, 5, 464., DOI: 10.3389/fpsyg.2014.00464
  9. Datteri E. and Tamburrini G. (2007). Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science, 74, 3: 409-430., DOI: 10.1086/522095
  10. De Garis H., Shuo C., Goertzel B. and Ruiting L. (2010). A world survey of artificial brain projects, Part I: large-scale brain simulations. Neurocomputing, 74, 1-3: 3-29.
  11. Donnarumma F., Prevete R., and Trautteur G. (2012). Programming in the brain: a neural network theoretical framework. Connection Science, 24, 2-3: 71-90., DOI: 10.1080/09540091.2012.684670
  12. Dror R.O., Dirks R.M., Grossman J.P., Xu H. and Shaw D.E. (2012). Biomolecular simulation: a computational microscope for molecular biology. Annual Review of Biophysics, 41: 429-52., DOI: 10.1146/annurev-biophys-042910-155245
  13. Eliasmith C., Stewart T.C., Choo X., Bekolay T., DeWolf T., Tang C. and Rasmussen D. (2012). A large-scale model of the functioning brain. Science, 338, 6111: 1202-1205., DOI: 10.1126/science.1225266
  14. Eliasmith C. and Trujillo O. (2014). The use and abuse of large-scale brain models. Current Opinion in Neurobiology, 25: 1-6., DOI: 10.1016/j.conb.2013.09.009
  15. Friedman M. (1974). Explanation and scientific understanding. The Journal of Philosophy, 71, 1: 5-19.
  16. Gijsbers V. (2007). Why unification is neither necessary nor sufficient for explanation. Philosophy of Science, 74, 4: 481-500., DOI: 10.1086/524420
  17. Grasso F. (2000). Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: progress and challenges. Robotics and Autonomous Systems, 30, 1-2: 115-131.
  18. Humphreys P. (2004). Extending ourselves: computational science, empiricism, and scientific method. New York: Oxford University Press., DOI: 10.1093/0195158709.001.0001
  19. Kandel E.R., Markram H., Matthews P.M., Yuste R. and Koch C. (2013). Neuroscience thinks big (and collaboratively). Nature Reviews. Neuroscience, 14: 659-64., DOI: 10.1038/nrn3578
  20. Kitcher P. (1981). Explanatory unification. Philosophy of Science, 48, 4: 507-531.
  21. Loeb J. (1900). Comparative physiology of the brain and comparative psychology. New York: G.P. Putman’s Sons., DOI: 10.5962/bhl.title.1896
  22. Long J. (2012). Darwin’s devices. What evolving robots can teach us about the history of life and the future of technology. New York: Basic Books.
  23. Markram H. (2006). The Blue Brain Project. Nature Reviews. Neuroscience, 7: 153-160., DOI: 10.1038/nrn1848
  24. Markram H., Meier K., Lippert T., Grillner S., Frackowiak R., Dehaene S., Knoll A., Sompolinsky H., Verstreken K., DeFelipe J., Grant S., Changeux J.P. and Saria A. (2011). Introducing the Human Brain Project. Procedia Computer Science, 7: 39-42., DOI: 10.1016/j.procs.2011.12.015
  25. Miłkowski M. (2015). Explanatory completeness and idealization in large brain simulations: a mechanistic perspective. Synthese: 1-22., DOI: 10.1007/s11229-015-0731-3
  26. Newell A. (1990). Unified theories of cognition. Cambridge (MA): Harvard University Press.
  27. Parker W.S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169, 3: 483-496., DOI: 10.1007/s11229-008-9434-3
  28. Reeke G.N., Sporns O. and Edelman G.M. (1990). Synthetic neural modeling: the “Darwin” series of recognition automata. Proceedings of the IEEE, 78, 9: 1498-1530., DOI: 10.1109/5.58327
  29. Reeve R., Webb B., Horchler A., Indiveri G. and Quinn R. (2005). New technologies for testing a model of cricket phonotaxis on an outdoor robot. Robotics and Autonomous Systems, 51, 1: 41-54., DOI: 10.1016/j.robot.2004.08.010
  30. Rosenblueth A. and Wiener N. (1945). The role of models in science. Philosophy of Science, 12, 4: 316-321., DOI: 10.1086/286874
  31. Roysam B., Shain W. and Ascoli G.A. (2009). The central role of neuroinformatics in the national academy of engineering’s grandest challenge: reverse engineer the brain. Neuroinformatics, 7, 1: 1-5., DOI: 10.1007/s12021-008-9043-9
  32. Suppe F. (1989). The semantic conception of theories and scientific realism. Urbana and Chicago: University of Illinois Press.
  33. Traub R. and Wong R. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science, 216, 4547: 745-747., DOI: 10.1126/science.7079735
  34. Webb B. (2006). Validating biorobotic models. Journal of Neural Engineering, 3, 3: 25-35., DOI: 10.1088/1741-2560/3/3/R01
  35. Winsberg E. (2003). Simulated experiments: methodology for a virtual world. Philosophy of Science, 70: 105-125., DOI: 10.1086/367872
  36. Woodward J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69: 366-377., DOI: 10.1086/341859

Edoardo Datteri, Federico Laudisa, in "PARADIGMI" 3/2015, pp. 23-46, DOI:10.3280/PARA2015-003003


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content