Click here to download

The status of the simulative method in cognitive science: current debates and future prospects
Journal Title: PARADIGMI 
Author/s: Vieri Giuliano Santucci, Dalia Nicole Cilia, Giovanni Pezzulo 
Year:  2015 Issue: Language: English 
Pages:  20 Pg. 47-66 FullText PDF:  88 KB
DOI:  10.3280/PARA2015-003004
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 


We review and critically evaluate the current status of the simulative approach in cognitive science and neuroscience. By discussing specific examples and success cases in computational neuroscience and robotics, we point out that several ideas, theories, and predictions that stemmed from artificial systems research have contributed significantly to scientific progress in cognitive science and neuroscience, and especially when modelling studies interacted synergistically with empirical and theoretical research. Furthermore, the simulative approach is represented in an increasing number of interdisciplinary conferences and events, and it has recently influenced funding policies in the EU and the USA. The examples reviewed here suggest that the simulative method is more efficacious when conducted in an interdisciplinary endeavour, when it provides a normative / mechanistic basis to generate empirical predictions, or offers a unifying perspective on empirical phenomena that are usually studied in isolation. However, despite the success cases reviewed here, the epistemological status of the simulative approach – and especially robotics – in cognitive science and neuroscience is still disputed and its impact is not fully realized.
Keywords: Cognitive Science, Computational neuroscience, Large-scale brain simulation, Models in neuroscience, Sciences of artificial, Simulative method.

  1. Anderson J.R. (1983). The architecture of cognition. Cambridge (MA): Harvard University Press.
  2. Arbib M.A. (1992). Schema theory. In: Shapiro S., ed. Encyclopedia of artificial intelligence. 2nd Edition. New York: Wiley: 1427-1443.
  3. Arbib M.A. (2003). The handbook of brain theory and neural networks. Cambridge: MIT Press.
  4. Arkin R.C. (1998). Behavior-based robotics. Cambridge (MA): MIT Press.
  5. Asada M., Hosoda K., Kuniyoshi Y., Ishiguro H., Inui T., Yoshikawa Y., Ogino M. and Yoshida C. (2009). Cognitive developmental robotics: a survey. IEEE Transactions on Autonomous Mental Development, 1, 1: 12-34.
  6. Baranes A. and Oudeyer P.Y. (2010). Maturationally-constrained competence-based intrinsically motivated learning. Proceedings of ICDL: 197-203., DOI: 10.1109/DEVLRN.2010.5578842
  7. Barsalou L.W. (1999). Perceptual symbol system. Behavioral and Brain Science, 22: 577-600.
  8. Barsalou L.W. (2008). Grounded cognition. Annual Review of Psychology, 59: 617-645.
  9. Bayer H.M. and Glimcher P.W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47: 129-141.
  10. Bednar J.A. (2009). Topographica: building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics, 3, 8: 1-9., DOI: 10.3389/neuro.11.008.2009
  11. Beer R.D. (1997). The dynamics of adaptive behavior: A research program. Robotics and Autonomous Systems, 20: 257-289.
  12. Brooks R.A. (1991). Intelligence without representation. Artificial Intelligence, 47: 139-159.
  13. Carpenter G.A. and Grossberg S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21: 77-88., DOI: 10.1109/2.33
  14. Churchland M.M., Cunningham J.P., Kaufman M.T., Ryu S.I. and Shenoy K.V. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron, 68: 387-400., DOI: 10.1016/j.neuron.2010.09.015
  15. Cisek P. (2007). Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of Royal Society B, 362: 1585-1599.
  16. Cisek P. and Kalaska J.F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron, 45: 801-814.
  17. Cisek P. and Kalaska J.F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33: 269-298., DOI: 10.1146/annurev.neuro.051508.135409
  18. Clark A. (1998). Being there. putting brain, body, and world together. Cambridge (MA): MIT Press.
  19. Clark A. (1999). An embodied cognitive science? Trends in Cognitive Science, 3: 345-351.
  20. Clark A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36: 181-204., DOI: 10.1017/S0140525X12000477
  21. Clark A. and Grush R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7: 5-16.
  22. Cordeschi R. (2002). The discovery of the artificial: behavior, mind and machines before and beyond cybernetics. Dordrecht: Kluwer.
  23. Cordeschi R. (2004). Cybernetics. In: Floridi L., ed. The Blackwell guide to philosophy of computing and information. Oxford: Blackwell: 186-196.
  24. Cordeschi R. (2006) Simulation models of organism behavior: some lessons from precybernetic and cybernetic approaches. In: Termini S., ed. Imagination and rigor: essays on Eduardo R. Caianiello’s scientific heritage. Berlin-Milan: Springer: 39-46.
  25. Cordeschi R. (2008). Steps toward the synthetic method: symbolic information processing and self-organization systems in early artificial intelligence. In: Husbands P., Holland O. and Wheeler M., eds. The mechanical mind in history. Cambridge (MA): MIT Press: 219-258.
  26. Datteri E. and Tamburrini G. (2007). Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science, 74, 3: 409-430.
  27. Daw N.D., Gershman S.J., Seymour B., Dayan P. and Dolan R.J., (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69: 1204-1215.
  28. Demiris Y. and Khadhouri B. (2005). Hierarchical attentive multiple models for execution and recognition. Robotics and Autonomous Systems, 54: 361-369.
  29. Dindo H., Zambuto D. and Pezzulo G. (2011). Motor simulation via coupled internal models using sequential Monte Carlo. Proceedings of IJCAI: 2113-2119.
  30. Doya K., Ishii S., Pouget A. and Rao R.P.N., eds. (2007). Bayesian brain: probabilistic approaches to neural coding. Cambrigde (MA): MIT Press.
  31. Engel A.K., Maye A., Kurthen M. and König P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Science, 17: 202-209., DOI: 10.1016/j.tics.2013.03.006
  32. Fiorillo C.D., Newsome W.T. and Schultz W. (2008). The temporal precision of reward prediction in dopamine neurons. Nature Neuroscience, 11: 966-973.
  33. Frackowiak R. (2014). Eyes on the prize. New Scientist, 223: 28-29.
  34. Frégnac Y. and Laurent G. (2014). Neuroscience: where is the brain in the Human Brain Project? Nature, 513: 27-29., DOI: 10.1038/513027a
  35. Friston K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11: 127-138., DOI: 10.1038/nrn2787
  36. Friston K., Schwartenbeck P., FitzGerald T., Moutoussis M., Behrens T. and Dolan R.J. (2014). The anatomy of choice: dopamine and decision-making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 1655: 20130481., DOI: 10.1098/rstb.2013.0481
  37. Glenberg A. (1997). What memory is for. Behavioral and Brain Sciences, 20: 1-55.
  38. Glimcher P.W. and Rustichini A. (2004). Neuroeconomics: the consilience of brain and decision. Science, 306: 447-452., DOI: 10.1126/science.1102566
  39. Gold J.I. and Shadlen M.N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30: 535-574., DOI: 10.1146/annurev.neuro.29.051605.113038
  40. Gottlieb J., Oudeyer P.-Y., Lopes M. and Baranes A. (2013). Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends in Cognitive Science, 17: 585-593., DOI: 10.1016/j.tics.2013.09.001
  41. Griffiths T.L., Chater N., Kemp C., Perfors A. and Tenenbaum J.B. (2010). Probabilistic models of cognition: exploring representations and inductive biases. Trends in Cognitive Science, 14: 357-364.
  42. Grossberg S. (1978). A theory of human memory: self-organization and performance of sensory-motor codes, maps, and plans. In: Rosen R. and Snell F., eds. Progress in theoretical biology. New York: Academic Press: 233-374.
  43. Gurney K.N., Prescott T.J. and Redgrave P. (2001). A computational model of action selection in the basal ganglia in a new functional anatomy. Biological Cybernetics, 84: 401-410.
  44. Harnad S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42: 335-346.
  45. Hoffmann H. (2007). Perception through visuomotor anticipation in a mobile robot. Neural Networks, 20: 22-33.
  46. Insel T.R., Landis S.C. and Collins F.S. (2013). The NIH Brain initiative. Science, 340: 687-688., DOI: 10.1126/science.1239276
  47. Jeannerod M. (2006). Motor cognition. New York: Oxford University Press.
  48. Ljungberg T., Apicella, P. and Schultz W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67, 1: 145-163.
  49. Lungarella M., Metta G., Pfeifer R. and Sandini G. (2003). Developmental robotics: a survey. Connection Science, 15: 151-190.
  50. Marcos E., Pani P., Brunamonti E., Deco G., Ferraina S. and Verschure P. (2013). Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance. Neuron, 78: 249-255.
  51. Markram H. (2012). The Human Brain Project. Scientific Amenican, 306: 50-55.
  52. Marr D. (1982). Vision: a computational investigation into the human representation and processing of visual information. New York: Henry Holt and Co.
  53. McCarthy J., Minsky M., Rochester N. and Shannon C. (1955). A proposal for the Darmouth summer research project on artificial intelligence. Available at: http://www.formal. stanford.edu/jmc/his- tory/dartmouth/dartmouth.html.
  54. McClelland J.L., McNaughton B.L. and O’Reilly R.C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102: 419-457.
  55. McClelland J.L., Botvinick M.M., Noelle D.C., Plaut D.C., Rogers T.T., Seidenberg M.S. and Smith L.B. (2010). Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Science, 14: 348-356.
  56. Metta G., Sandini G., Natale L. and Panerai F. (2001). Development and robotics. Proceedings of IEEE-RAS: 33-42.
  57. Mirolli M., Santucci V.G. and Baldassarre G. (2013). Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study. Neural Networks, 39: 40-51.
  58. Montague P.R., Dolan R.J., Friston K.J. and Dayan P. (2012). Computational psychiatry. Trends in Cognitive Science, 16: 72-80., DOI: 10.1016/j.tics.2011.11.018
  59. Newell A., Shaw J.C. and Simon H.A. (1958). Elements of a theory of human problem solving. Psychological Review, 65, 3: 151-166.
  60. Newell A. and Simon H.A. (1972). Human problem solving. Englewood Cliffs (NJ): Prentice-Hall.
  61. Nolfi S. (2009). Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In: Hooker C., ed. Handbook of the philosophy of science. Vol 10: Philosophy of complex systems. Amsterdam: Elsevier.
  62. O’Regan J.K. and Noe A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24: 883-917.
  63. O’Reilly R.C. and Munakata Y. (2000). Computational explorations in cognitive neuroscience: understanding the mind by simulating the brain. Cambridge (MA): MIT Press.
  64. Oudeyer P.Y. (2010). On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development. IEEE Transactions on Autonomous Mental Development, 2:2-16., DOI: 10.1109/TAMD.2009.2039057
  65. Oudeyer P.Y., Kaplan F. and Hafner V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11, 2: 265-286.
  66. Pezzulo G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind and Language, 26: 78-114.
  67. Pezzulo G., Barsalou L.W, Cangelosi A., Fischer M.H., McRae K. and Spivey M. (2011). The mechanics of embodiment: a dialogue on embodiment and computational modeling. Frontiers in Psychology, 2: 1-21.
  68. Pezzulo G., Barsalou L.W., Cangelosi A., Fischer M.H., McRae K. and Spivey M.J. (2013). Computational grounded cognition: a new alliance between grounded cognition and computational modelling. Frontiers in Psychology, 3, 612., DOI: 10.3389/fpsyg.2012.00612
  69. Pezzulo G. and Castelfranchi C. (2009). Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychological Research, 73: 559-577.
  70. Pfeifer R. and Bongard J.C. (2006). How the body shapes the way we think. Cambridge (MA): MIT Press.
  71. Pfeifer R., Lungarella M. and Iida F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318: 1088-1093.
  72. Poo M. (2014). Whereto the mega brain projects? National Science Review, 1, 1: 12-14., DOI: 10.1093/nsr/nwt019
  73. Rao R.P. and Ballard D.H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2: 79-87., DOI: 10.1038/4580
  74. Ratcliff R. (1978). A theory of memory retrieval. Psychological Review, 85: 59-108.
  75. Redgrave P., Prescott T.J. and Gurney K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89: 1009-1023.
  76. Rennó-Costa C., Lisman J.E. and Verschure P.F.M.J. (2010). The mechanism of rate remapping in the dentate gyrus. Neuron, 68: 1051-1058., DOI: 10.1016/j.neuron.2010.11.024
  77. Rolf M., Steil J.J. and Gienger M. (2010). Goal babbling permits direct learning of inverse kinematics. IEEE Transactions on Autonomous Mental Development, 2, 3: 216-229.
  78. Romo R. and Schultz W. (1990). Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. Journal of Neurophysiology, 63, 3: 592-606.
  79. Rose N. (2014). The Human Brain Project: social and ethical challenges. Neuron, 82, 6:1212-1215., DOI: 10.1016/j.neuron.2014.06.00
  80. Rosenbaum D.A. (2005). The Cinderella of psychology: the neglect of motor control in the science of mental life and behaviour. American Psychologist, 60: 308-317., DOI: 10.1037/0003-066X.60.4.308
  81. Rosenbloom P.S., Laird J.E. and Newell A. (1992). The Soar papers: research on integrated intelligence. Cambridge (MA): MIT Press.
  82. Roy D. (2005). Semiotic schemas: a framework for grounding language in action and perception. Artificial Intelligence, 167: 170-205., DOI: 10.1016/j.artint.2005.04.007
  83. Rumelhart D.E., McClelland J.L. and the P.R Group. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Cambridge (MA): MIT Press.
  84. Ryan R.M. and Deci E.L. (2000). Intrinsic and extrinsic motivations: classic definitions and new directions. Contemporary Educational Psychology, 25, 1: 54-67.
  85. Salamone J.D. and Correa M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76: 470-485., DOI: 10.1016/j.neuron.2012.10.021
  86. Sanborn A.N., Griffiths T.L. and Shiffrin R.M. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60: 63-106., DOI: 10.1016/j.cogpsych.2009.07.001
  87. Sandamirskaya Y., Zibner S.K., Schneegans S. and Schöner G. (2013). Using dynamic field theory to extend the embodiment stance toward higher cognition. New Ideas Psychology, 31: 322-339.
  88. Santucci V.G., Baldassarre G. and Mirolli M. (2014). Autonomous selection of the “what” and the “how” of learning: an intrinsically motivated system tested with a two armed robot. Proceedings of ICDL-Epirob, IEEE International Conferences: 434-439.
  89. Schoener G. (2008). Dynamical systems approaches to cognition. In: Spencer P., Thomas M.S. and McClelland J.L., eds. Toward a unified theory of development: connectionism and dynamic systems theory re-considered. Oxford: Oxford University Press.
  90. Schultz W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1: 1-27.
  91. Schultz W., Apicella P. and Ljungberg T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13, 3: 900-913.
  92. Schultz W., Dayan P. and Montague P.R. (1997). A neural substrate of prediction and reward. Science, 275: 1593-1599.
  93. Schwartenbeck P., FitzGerald T.H., Mathys C., Dolan R. and Friston K. (2014). The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cerebral Cortex, 25, 10:3434-3445., DOI: 10.1093/cercor/bhu159
  94. Shadlen M.N., Kiani R., Hanks T.D. and Churchland A.K. (2008). Neurobiology of decision making: sn intentional framework. In: Engel C. and Singer W., eds., Better than conscious? Decision making, the human mind, and implications for institutions. Cambridge (MA): MIT Press: 72-101.
  95. Shiffrin R.M. and Steyvers M. (1997). A model for recognition memory: REM-retrieving effectively from memory. Psychonomic Bullettin Review, 4: 145-166., DOI: 10.3758/BF03209391
  96. Simon H.A. (1996). The sciences of the artificial. Cambridge (MA): MIT Press.
  97. Spivey M. (2007). The continuity of mind. New York: Oxford University Press.
  98. Steels L. (2003). Intelligence with representation. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 361: 2381-2395.
  99. Stone R. and Lavine M. (2014). The social life of robots. Science, 346: 178-179., DOI: 10.1126/science.346.6206.178
  100. Sutton, R.S. and Barto A.G. (1998). Reinforcement learning: an introduction. Cambridge (MA): MIT Press.
  101. Tenenbaum J.B., Griffiths T.L. and Kemp C. (2006). Theory-based bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10: 309-318.
  102. Tenenbaum J.B., Kemp C., Griffiths T.L. and Goodman N.D. (2011). How to grow a mind: statistics, structure, and abstraction. Science, 331: 1279-1285., DOI: 10.1126/science.1192788
  103. Thelen E. and Smith L.B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge (MA): MIT Press.
  104. Thelen E., Schöner G., Scheier C. and Smith L. (2001). The dynamics of embodiment: a field theory of infant perseverative reaching. Behavioral and Brain Sciences, 24: 1-33.
  105. Thompson E. and Varela F.J. (2001). Radical embodiment: neural dynamics and consciousness. Trends in Cognitive Science, 5: 418-425.
  106. Usher M. and McClelland J.L. (2001). On the time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108, 3: 550-592.
  107. Verschure P.F.M.J. (2012). Distributed adaptive control: a theory of the mind, brain, body nexus, Biologically Inspired Cognitive Architectures, 1: 55-72., DOI: 10.1016/j.bica.2012.04.005
  108. Verschure P.F.M.J., Pennartz C.M.A. and Pezzulo G. (2014). The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philosophical Transactions of the Royal Society B: Biological Sciences, 369: 20130483., DOI: 10.1098/rstb.2013.048
  109. Von Hofsten C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8, 6: 266-272.
  110. Webb B. (2000). What does robotics offer animal behaviour? Animal Behavior, 60: 545-558.
  111. Webb B. (2001). Can robots make good models of biological behaviour? Behavioral and Brain Sciences, 24: 1033-1050., DOI: 10.1017/S0140525X01000127
  112. Weng J. (2004). Developmental robotics: theory and experiments. International Journal of Humanoid Robotics, 1, 2: 199-236.
  113. White R. (1959). Motivation reconsidered: the concept of competence. Psychological Review, 66: 297-333.
  114. Wiener N. (1950). The human use of human beings. Boston: Houghton Mifflin.
  115. Wolpert D.M. and Ghahramani Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3: 1212-1217.

Vieri Giuliano Santucci, Dalia Nicole Cilia, Giovanni Pezzulo, in "PARADIGMI" 3/2015, pp. 47-66, DOI:10.3280/PARA2015-003004

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content