Click here to download

School evaluation: estimation problems and some empirical evidence about INVALSI tests results
Journal Title: RIV Rassegna Italiana di Valutazione 
Author/s: Pasquale Recchia, Ernesto Toma 
Year:  2015 Issue: 61 Language: Italian 
Pages:  21 Pg. 49-69 FullText PDF:  129 KB
DOI:  10.3280/RIV2015-061004
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 


The standardized learning tests, proposed in recent years in Italy by INVALSI, represent valuable tools for evaluating the educational system and provide policy guidance to policy makers. This work aims to describe an adequate assessment methodology of schools in terms of effectiveness measured as added value, providing some results concerning the regional differences in Italy, and highlights some problems related to these assessments. To do this we appropriately used multilevel regression models. The empirical results highlight the backwardness of the southern regions than in northern parts of the country, only in small part due to a different economic and social composition, but they show the presence of some southern classes getting surprisingly positive results.
Keywords:  School Effectiveness, Education, Multilevel Models, Evaluation, Added Value, Learning.

  1. Sestito, P., (2012), La valutazione del valore aggiunto della scuola, Giornale Italiano della ricerca educativa. Numero Speciale.
  2. Barbieri, G., Cipollone, P., Sestito, P., (2008), Labour matker for teachers: demographic characteristics and allocative mechanisms, Giornale degli economisti e annali di economia, v. 66, n.3, pp. 335-373., 10.2139/ssrn.116015DOI: 10.2139/ssrn.116015
  3. Bertoni, M., Brunello, G., Rocco, L., (2012), When the cat is near the mice won’t play:the effect of external examiners in italian schools, Journal of Public Economics, v.104, pp. 65-77., 10.1016/j.jpubeco.2013.04.01DOI: 10.1016/j.jpubeco.2013.04.01
  4. Bond, T., Fox, C., (2007), Applying the Rasch model: fundamental measurement in the human sciences, Lawrence Erlbaum Associates, Publishers.
  5. Campodifiori, E., Figura, E., Papini, M., Ricci, R., (2010), Un indicatore di status socio-economicoculturale degli allievi della quinta primaria in Italia, Working paper INVALSI, n. 2/2010.
  6. Cipollone, P., Montanaro, P., Sestito, P., (2010), Questioni di economia e finanza, n.754. Banca d’Italia., 10.2139/ssrn.167012DOI: 10.2139/ssrn.167012
  7. De Leew, J., Meijer, E., (2008), Handbook of multilevel analysis, Springer.
  8. Dumay, X., Dupriez, V., (2004), Effet établissement: effet de processus et/ou effet de composition? Les cahiers de Recherche en Education et Formation, n.36, GIRSEF, Louvain.
  9. Goldstein, H., Spiegelhalter, D., (1996), League tables and their limitations: statistical issues in comparisons of institutional performance, Journal of the Royal Statistical Society. Series A, v. 159, n.3., pp. 385-443., 10.2307/298332DOI: 10.2307/298332
  10. Grilli, L., Rampichini, C., (2009), Multilevel models for the evaluation of educational institutions: a review, Statistical methods and models for the evaluation of educational services and product’s quality. pp 61-80. Heidelberg: Physica-Verlag., 10.1007/978-3-7908-2385-1_5DOI: 10.1007/978-3-7908-2385-1_5
  11. Hox, J.J., (2002), Multilevel analysis: techniques and applications. Lawrence Erlbaum Associates, Publishers.
  12. Agasisti, T., Ieva, F., Paganoni, A., (2014), Multilevel modeling of hetereogeneity in math achievements: different class - and school - effects across Italians regions, Atti del “47th Scientifing Meeting of the Italian Statistical Society”, Cagliari 11-13 Giugno 2014.
  13. INVALSI, (2013), Rilevazioni nazionali sugli apprendimenti 2012-2013. Il quadro di sistema. Rapporto ufficiale INVALSI 2013. Scaricabile da: http://www.invalsi.it.
  14. INVALSI, (2013), Rilevazioni nazionali sugli apprendimenti 2012-2013. Rapporto tecnico. Scaricabile da: http://www.INVALSI.it.
  15. Kramarz, F., Manchin, S., Ouazad, A., (2008), What makes a test score? The respective contributions of pupils, schools, and peers in achievement in English primary education. IZA discussion papers, n. 3866., 10.2139/ssrn.128364DOI: 10.2139/ssrn.128364
  16. Maas C.J.M., Hox, J.J., (2004), Robustness issues in multilevel regression analysis. Statistica Neerlandica, v.58, n.2, pp. 127-137., 10.1046/j.0039-0402.2003.00252.DOI: 10.1046/j.0039-0402.2003.00252.
  17. Martini, A., (2007), Autonomia "chiama" valutazione, Rivista dell’istruzione, Maggioli Editore, 23, 2, 35-41.
  18. Raudenbush, S.W., Willms, J., (1995), The estimation of school effects. Journal of educational and behavioral statistics, v.20, n.4, pp. 307-335., 10.2307/116530DOI: 10.2307/116530
  19. Ricci, R., (2008), La misurazione del valore aggiunto nella scuola, Fondazione Giovanni Agnelli, Working Paper, n.9.
  20. Snijders, T.A.B., Bosker, R.J., (2011), Multilevel analysis: ad introduction to basic and advanced multilevel modeling, Sage Publication.
  21. StataCorp, (2009), Stata longitudinal-data/panel-data reference manual. Release 11. Stata press publication.
  22. Trinchero, R., (2014), Il Servizio Nazionale di Valutazione e le prove INVALSI. Stato dell’arte e proposte per una valutazione come agente di cambiamento, Form@re, Open Journal per la Formazione in Rete, v.14, n.4, pp. 34-49., 10.13128/formare-1579DOI: 10.13128/formare-1579

Pasquale Recchia, Ernesto Toma, School evaluation: estimation problems and some empirical evidence about INVALSI tests results in "RIV Rassegna Italiana di Valutazione" 61/2015, pp. 49-69, DOI:10.3280/RIV2015-061004

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content