Research on Students’ Performance in Higher Education through Sequence Analysis

Autori/Curatori Giampiero D'Alessandro, Alessandra Decataldo
Anno di pubblicazione 2016 Fascicolo 2016/110 Lingua Inglese
Numero pagine 22 P. 19-40 Dimensione file 2009 KB
DOI 10.3280/SR2016-110003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This paper aims to prove how adequate the Sequence Analysis’ tools are in the study of the complexity of the Italian higher education system. Indeed, this system has been strongly challenged by dispersion in its main aspects: (1) low number of graduates; (2) excessively long university careers; (3) very high number of drop outs. Through longitudinal administrative data of a cohort of students enrolled at Sapienza University of Rome, the Sequence Analysis allows: (1) to describe the phenomena of late graduation and delayed performance; (2) to identify different types of students dropping out; (3) evaluation of other particular phenomena that can delay the students’ career. Through this analysis, we will focus our attention on individual as well as on contextual factors because we assume that: «It is one thing to understand why students leave; it is another to know what institutions can do to help students stay and succeed » (Tinto 2007, p. 6).

  1. A. Amico, G. D’Alessandro (2016), «Strategie di gestione e analisi di grandi basi di dati amministrativi: l’utilità di trasformare dati sincronici in vettori diacronici», Sociologia e ricerca sociale, XXVII, 109, pp. 127-142, DOI: 10.3280/SR2016-109011
  2. J.P. Bean (1978), Drop outs and Turnover: The Synthesis of a Causal Model of Student Attrition, Doctoral Dissertation, Iowa City, University of Iowa.
  3. J.P. Bean (1980), «Dropouts and Turnover: The Synthesis and Test of a Causal Model of Student Attrition», Research in Higher Education, XII, 2, pp. 155-87, DOI: 10.1007/BF00976194
  4. J.P. Bean (1981a), The Synthesis of a Theoretical Model of Student Attrition, Paper presented at the Annual Meeting of the American Educational Research, 17th-19th April, Los Angeles,, accessed 23th June 2016.
  5. J.P. Bean (1982), «Student Attrition, Intentions and Confidence: Interactions Effect in a Path Model», Research in Higher Education, XVII, 4, pp. 291-320, DOI: 10.1007/BF00977899
  6. G. Benvenuto, A. Decataldo, A. Fasanella (a c. di) (2012), C’era una volta l’università? Analisi longitudinale delle carriere degli studenti prima e dopo la «grande riforma», Acireale-Roma, Bonanno.
  7. J.B. Berger, S.C. Lyon (2005), Past to Present: A Historical Look at Retention, in A. Seidman (ed.), College Student Retention: Formula for Student Success, Westport, Praeger.
  8. P. Blanchard, F. Bühlmann, J.A. Gauthier (eds.) (2014), Advances in Sequence Analysis: Theory, Method, Applications, Series: Life Course Research and Social Policy, vol. 2, New York, Springer.
  9. H.P. Blossfeld, A. Hamerle, K.U. Mayer (1989), Event History Analysis, Hillsdale, Erlbaum. A.F. Cabrera, M.B. Castaneda, A. Nora, D. Hengstler (1992), «The Convergence between Two Theories of College Persistence», The Journal of Higher Education, LXIII, 2, pp. 143-64, DOI: 10.2307/1982157
  10. A. Gabadinho, G. Ritschard, N.S. Müller, M. Studer (2009), Mining Sequence Data in R with the TraMineR package: A User’s Guide, Department of Econometrics and Laboratory of Demography, Geneva, University of Geneva,, accessed 23th June 2016.
  11. A. Gabadinho, G. Ritschard, N.S. Müller, M. Studer (2011), «Analyzing and Visualizing State Sequences in R with TraMineR», Journal of Statistical Software, XL, 4, pp. 1-37, DOI: 10.18637/jss.v040.i04
  12. R.E. Iffert (1958), Retention and Withdrawal of College Students, United States Office of Education, Bulletin 1958 no. 1, Department of Health, Education and Welfare, Washington,, accessed 23th June 2016. H. MacIndoe, A. Abbott (2004), Sequence Analysis and Optimal Matching Techniques for Social Science Data, in M. Hardy, A. Bryman (eds.), The Handbook of Data Analysis, London-Thousand Oaks-New Delhi-Singapore, Sage.
  13. A.C. McCormick, C.D. Carroll (1997), Transfer Behaviour among Beginning Postsecondary Students: 1989-1994, Department of Education, National Center for Education Statistics, Eric Document Reproduction, Washington,, accessed 23th June 2016.
  14. S. Menard (ed.) (2007), Handbook of Longitudinal Research: Design, Measurement, and Analysis, Amsterdam, Elsevier.
  15. J.W. Mohr, H.C. White (2008), «How to model an Institution», Theory and Society, XXXVII, 5, pp. 485-512, DOI: 10.1007/s11186-008-9066-0
  16. R. Moscati, M. Vaira (a c. di) (2008), L’università di fronte al cambiamento, Bologna, il Mulino. E.T. Pascarella (1982), Studying Student Attrition, San Francisco, Jossey-Bass.
  17. E.T. Pascarella, P.T. Terenzini (1978), «The Relation of Students’ Precollege Characteristics and Freshman Year Experience to Voluntary Attrition», Research in Higher Education, IX, 4, pp. 347-66, DOI: 10.1007/BF00991406
  18. E.T. Pascarella, P.T. Terenzini (1979), «Interaction Effects in Spady and Tinto’s Conceptual Models of College Attrition», Sociology of Education, LII, 4, pp. 197-210, DOI: 10.2307/2112401
  19. G. Ritschard, A. Gabadinho, M. Studer, N.S. Müler (2009), Converting between Various Sequence Representations, in Z. Ras, A. Darzinska (eds.), Advances in Data Management, Series Studies in Computational Intelligence, vol. 223, Berlin, Springer.
  20. S. Scherer (2013), Analisi dei dati longitudinali. Un’introduzione pratica, Bologna, il Mulino.
  21. W.G. Spady (1970), «Dropouts from Higher Education: An Interdisciplinary Review and Synthesis», Interchange, I, 1, pp. 64-85, DOI: 10.1007/BF02214313
  22. W.G. Spady (1971), «Dropouts from Higher Education: Toward an Empirical Model», Interchange, II, 3, pp. 38-62, DOI: 10.1007/BF02282469
  23. M. Studer (2013), «WeightedCluster Library Manual: A Practical Guide to creating Typologies of Trajectories in the Social Science with R», Lives Working Papers, 24, pp. 1-32, DOI: 10.12682/lives.2296-1658.2013.24
  24. M. Studer, G. Ritschard (2014), «A Comparative Review of sequence Dissimilarity Measures », Lives Working Papers, 33, pp. 1-47, DOI: 10.12682/lives.2296-1658.2014.33
  25. V. Tinto (1975), «Dropouts from Higher Education: A Theoretical Synthesis of Recent Literature », Review of Educational Research, XXXXV, 1, pp. 89-125, DOI: 10.3102/00346543045001089
  26. V. Tinto (1987), Leaving College: Rethinking the Causes and Cures of Student Attrition, Chicago, University of Chicago Press.
  27. V. Tinto (1997), «Classrooms As Communities: Exploring The Educational character of Student Persistence», Journal of Higher Education, LXVIII, 6, pp. 599-623, DOI: 10.2307/2959965
  28. V. Tinto (1999), «Taking Retention seriously: Rethinking the First Year of College», Nacada Journal, IXX, 2, pp. 5-9, DOI: 10.12930/0271-9517-19.2.5
  29. V. Tinto (2004), Student Retention and Graduation: Facing the Truth, living with the Consequences, Washington, The Pell Institute.
  30. V. Tinto (2007), «Research and Practice of Student Retention: What next?», Journal of College Student Retention: Research, Theory & Practice, VIII, 1, pp. 1-19, DOI: 10.2190/4YNU-4TMB-22DJ-AN4W

Giampiero D'Alessandro, Alessandra Decataldo, Research on Students’ Performance in Higher Education through Sequence Analysis in "SOCIOLOGIA E RICERCA SOCIALE " 110/2016, pp 19-40, DOI: 10.3280/SR2016-110003