Click here to download

Big Data and external audit. An explorative study in the Italian context
Author/s: Federica De Santis 
Year:  2018 Issue: Language: Italian 
Pages:  26 Pg. 129-154 FullText PDF:  261 KB
DOI:  10.3280/MACO2018-002007
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

Keywords: Revisione contabile, Big Data, Data Analytics, audit innovation.

  1. Allegrini M., D’Onza G. (2011), Corporate governance, risk management e responsabilità sociale fra presente e futuro dell’attività di internal auditing, Management Control, 1, pp. 151-178., DOI: 10.3280/MACO2011-001007
  2. Alles M.G. (2015), Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession, Accounting Horizons, 29, 2, pp. 439-449.
  3. Alles M.G., Kogan A., Vasarhelyi M.A. (2008), Exploiting comparative advantage: A paradigm for value added research in accounting information systems, International Journal of Accounting Information Systems, 9, pp. 202-215.
  4. Alles M., Gray G.L. (2016), Incorporating big data in audits: Identifying inhibitors and a research agenda to address those inhibitors, International Journal of Accounting Information Systems, 22, pp. 44-59.
  5. Appelbaum D., Kogan, A., Vasarhelyi M.A. (2016), Analytics in External Auditing: A Literature Review. In Rutgers University CARLab Newark, NJ, USA Working Paper.
  6. Azzali S., Mazza T. (2011), La valutazione degli Information Technology Controls nell’ambito di sistemi di controllo interno: I risultati di una ricerca empirica, Management Control, 3, pp. 91-118., DOI: 10.3280/MACO2011-003005
  7. Beath C., Becerra-Fernandez, J.R., Short J. (2012). Finding value in the data explosion. MIT Sloan Management Review, 53, 4, pp. 18-20
  8. Bierstaker J., Janvrin D., Lowe D.J., Carey W.P. (2014), What factors influence auditors’ use of computer-assisted audit techniques? International Journal of Cardiology, 30, pp. 67-74.
  9. Brown-Liburd H., Issa H., Lombardi D. (2015), Behavioral implications of big data’s impact on audit judgment and decision making and future research directions, Accounting Horizons, 29, 2, pp. 451-468.
  10. Bruni G. (2004), La revisione dei conti. Tracce storiche e recenti sviluppi, Rivista dei dottori commercialisti, 55, 4, pp. 739-763
  11. Campedelli B. (1996), Analisi dei rischi rilevanti nella revisione aziendale, Torino, Giappichelli.
  12. Cao M., Chychyla R., Stewart T. (2015), Big data analytics in financial statement audits, Accounting Horizons, 29, 2, pp. 423-429,
  13. Chen M., Mao S., Liu Y. (2014), Big data: A survey. Mobile Networks and Applications, 19, 2, pp. 171-209.
  14. Chiucchi M.S., Gatti M., Marasca S. (2012), The relationship between management ac-counting Does the organizational life cycle affect the management accounting system and ERP systems in a medium-sized firm: a bidirectional perspective, Management Control, Suppl. 3, pp. 39-65., DOI: 10.3280/MACO2013-SU3003
  15. Cohen J., Krishnamoorthy G., Wright A.M. (2002), Corporate Governance and the Audit Process, Contemporary Accounting Research, 19, 4, pp. 573-594.
  16. Connelly R., Playford C.J., Gayle V., Dibben C. (2016), The role of administrative data in the big data revolution in social science research, Social Science Research, 59, 1-12.
  17. Curtis M.B., Payne E.A. (2014), Modeling voluntary CAAT utilization decisions in auditing. Managerial Auditing Journal, 29, 4, pp. 304-326.
  18. Curtis M.B., Payne E.A. (2008), An examination of contextual factors and individual char-acteristics affecting technology implementation decisions in auditing, International Journal of Accounting Information Systems, 9, pp. 104-121.
  19. Dai J., Vasarhelyi M.A. (2016), Imagineering Audit 4.0., Journal of Emerging Technologies in Accounting, 13, 1, pp. 1-15.
  20. De Santis F. (2016), Auditing Standard Change and Auditors’ Everyday Practice: A Field Study, International Business Research, 9, 12, pp. 41.
  21. Dechow P.M., Ge W., Larson C.R., Sloan R.G. (2011), Predicting Material Accounting Misstatements, Contemporary Accounting Research, 28, 1, pp. 17-82.
  22. D’Onza G. (2013), L'internal auditing: Profili organizzativi, dinamica di funzionamento e creazione del valore, Torino, G. Giappichelli Editore.
  23. D’Onza G., Rigolini A., Brotini F. (2016), Esiste una strategia di Internal Auditing che crea valore? Un’analisi empirica del contesto italiano, Management Control, 1, pp. 125-148., DOI: 10.3280/MACO2016-001008
  24. Earley C.E. (2015), Data analytics in auditing: Opportunities and challenges, Business Horizons, 58, 5, pp 493-500.
  25. Fischer M.J. (1996), Realizing” the benefits of new technologies as a source of audit evidence: An interpretive field study. Accounting, Organizations and Society, 21, 2-3, pp. 219-242.
  26. Fredriksson C. (2015, November), Knowledge management with Big Data Creating new possibilities for organizations. In The XXIVth Nordic Local Government Research Conference (NORKOM).
  27. Gartner (2014), Gartner Survey Reveals That 73 Percent of Organizations Have Invested or Plan to Invest in Big Data in the Next Two Years. Press Release, September 17th --
  28. Gepp A., Linnenluecke M.K., O’Neill T.J., Smith T. (2018), Big data techniques in auditing research and practice: Current trends and future opportunities. Journal of Accounting Literature, 40, pp. 102-115.
  29. Gray G.L., Debreceny R.S. (2014), A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits, International Journal of Accounting Information Systems, 15, 4.
  30. Griffith E.E., Hammersley J.S., Kadous K. (2015), Audits of Complex Estimates as Verification of Management Numbers: How Institutional Pressures Shape Practice. Contemporary Accounting Research, 32, 3, pp. 833-863.
  31. Issa H., Sun T., Vasarhelyi M.A. (2016), Research Ideas for Artificial Intelligence in Auditing: The Formalization of Audit and Workforce Supplementation, Journal of Emerging Technologies in Accounting, 13, 2, pp. 1-20.
  32. Krahel J.P., Titera W.R. (2015), Consequences of big data and formalization on accounting and auditing standards, Accounting Horizons, 29, 2, pp. 409-422.
  33. Lamboglia R., D’Onza G. (2013), Un modello di gestione del rischio reputazionale. Dall’identificazione al fronteggiamento, Management Control, 3, pp. 7-34., DOI: 10.3280/MACO2013-003002
  34. Laney D. (2001, February 6), 3-D data management: Controlling data volume, velocity and variety. Application Delivery Strategies by META Group Inc. -- Retrieved from
  35. Lillis A.M. (1999), A framework for the analysis of interview data from multiple field research sites, Accounting and Finance, 39, 1, pp. 79-105.
  36. Liu Q., & Vasarhelyi M.A. (2014), Big Questions in AIS Research: Measurement, Information Processing, Data Analysis, and Reporting, Journal of Information Systems.
  37. Lucianetti L., Battista V. (2015), La manipolazione dei valori di bilancio: pressione del ma-nagement e tratti personali nell’attività del controller, Management Control, 1, pp. 101-132., DOI: 10.3280/MACO2015-001005
  38. McKinsey, Company. (2011), Big data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute, (June), pp. 156.
  39. O’Dwyer B., Owen D., Unerman J. (2011), Seeking legitimacy for new assurance forms: The case of assurance on sustainability reporting, Accounting, Organizations and Society, 36, 1, pp. 31-52.
  40. Power M. (1997), The audit society : rituals of verification, Oxford University Press.
  41. Richins G., Stapleton A., Stratopoulos T.C., Wong C. (2017), Big Data Analytics: Opportunity or Threat for the Accounting Profession? Journal of Information Systems, Fall, 31, 3, pp. 63-79.

Federica De Santis, Big Data and external audit. An explorative study in the Italian context in "MANAGEMENT CONTROL" 2/2018, pp. 129-154, DOI:10.3280/MACO2018-002007


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content