Click here to download

No profit e impatto sociale al tempo dei Big Data: tra Quantified Context e Blockchain
Journal Title: SALUTE E SOCIETÀ 
Author/s: Antonio Maturo, Marta Gibin 
Year:  2020 Issue: Language: Italian 
Pages:  18 Pg. 157-174 FullText PDF:  199 KB
DOI:  10.3280/SES2020-001012
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

Keywords: Big data; evidence-based policy; quantified context; blockchain; social impact; non-profit.

  1. Halford S., Pope C., Weal M. (2013). Digital futures? Sociological challenges and opportunities in the emergent semantic web. Sociology, 47(1): 173-189., DOI: 10.1177/003803851245379
  2. Halford S., Savage M. (2017). Speaking Sociologically with Big Data: Symphonic Social Science and the Future for Big Data Research. Sociology, 51(6): 1132-1148., DOI: 10.1177/003803851769863
  3. Hey T., Tansley S., Tolle K. (2009). Jim Grey on eScience: A transformed scientific method. In: Hey T., Tansley S., Tolle K., editors, The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research.
  4. Ito J., Narula N., Ali R. (2017). The Blockchain Will Do to the Financial System What the Internet Did to Media. Harvard Business Review, 8 marzo 2017. -- Testo disponibile al sito: (26/07/2019).
  5. Katz J.E. (2008). Handbook of mobile communication studies. London: The MIT Press.
  6. Kelling S., Hochachka W., Fink D., Riedewald M., Caruana R., Ballard G., Hooker G. (2009). Data-intensive Science: A new paradigm for biodiversity studies. BioScience, 59(7): 613-620.
  7. Kitchin R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, April-June 2014: 1-12., DOI: 10.1177/205395171452848
  8. Laidin L., Papadopoulou K.A., Dane N.A. (2019). Parameters for Building Sustainable Blockchain Application Initiatives. The JBBA, 2(1): 1-6.
  9. Lombi L. (2015). La ricerca sociale al tempo dei big data: sfide e prospettive. Studi di Sociologia, 2: 215-227., DOI: 10.1400/23381
  10. Luhmann N. (1990). Sistemi sociali. Bologna: il Mulino.
  11. Mandiberg M. (2012). The social media reader. New York: NYU Press, New York University.
  12. Manovich L. (2012). Trending: The promises and the challenges of big social data. In: Gold M.K., Debates in the Digital Humanities. Minneapolis, MN: University of Minnesota Press.
  13. Marres N., Gerlitz C. (2016). Interface methods: Renegotiating the relations between digital social research, STS and the sociology of innovation. Sociological Review, 64: 21-46., DOI: 10.1111/1467-954X.1231
  14. Mattila J. (2016). “The Blockchain Phenomenon – The Disruptive Potential of Distributed Consensus Architectures”, ETLA Working Papers No 38. Testo disponibile al sito: (25/07/2019).
  15. Al-Saqaf W., Seidler N. (2017). Blockchain technology for social impact: opportunities and challenges ahead. Journal of Cyber Policy, 2(3): 338-354., DOI: 10.1080/23738871.2017.140008
  16. Anderson C. (2008). The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 23 giugno 2008. -- Testo disponibile al sito: (26/07/2019).
  17. Bellini M. (2019). Blockchain: cos’è, come funziona e gli ambiti applicativi in Italia. Blockchain4Innovation, 18 giugno 2019. -- Testo disponibile al sito: (26/07/2019).
  18. Black N. (2001). Evidence based policy: Proceed with care. British Medical Journal, 323: 275-279.
  19. Blind K. (2018). “Current Challenges for Measuring Innovation, their Implications for Evidence-Based Innovation Policy and the Opportunities of Big Data”, paper presentato alla Conferenza “Impact of R&I Policy at the Crossroads of Policy Design, Implementation, Evaluation”, Vienna, 5 Novembre 2018. -- Testo disponibile al sito: (26/07/2019).
  20. Maturo A., Moretti V. (2019). Digital Health and the Gamification of Life. New York: Emerald.
  21. Montero A.L. (2015). Evidence in public social services: and overview from practice and applied research. Bruxelles: The European Social Network.
  22. Olshannikova E., Olsson T., Huhtamäki J., Kärkkäinen H. (2017). Conceptualizing Big Social Data. Journal of Big Data, 4(3): 1-19.
  23. Parkhurst J. (2017). The Politics of Evidence. From evidence-based policy to the good governance of evidence. London – New York City: Routledge.
  24. Porway J. (2015). Five principles for applying data science for social good. O’Reilly, 1° ottobre 2015. -- Testo disponibile al sito: (14/07/2019).
  25. Rogers R. (2013). Digital Methods. Cambridge, MA: The MIT Press.
  26. Savage M., Burrows R. (2007). The coming crisis of empirical sociology. Sociology, 41(5): 885-899., DOI: 10.1177/003803850708044
  27. Spaggiari O. (2013). Big Data: i numeri che ci migliorano la vita. Vita, 22 novembre 2013. Testo disponibile al sito: (26/07/2019).
  28. Tinati R., Halford S., Carr L., Pope C. (2014). Big Data: Methodological Challenges and Approaches for Sociological Analysis. Sociology, 48(4): 663-681., DOI: 10.1177/003803851351156
  29. Wesselink A., Colebatch H., Pearce W. (2014). Evidence and policies: discourses, meanings and practices. Policy Sciences, 47(4): 339-344.
  30. Zumbrun J. (2014). SAT Scores and Income Inequality: How Wealthier Kids Rank Higher. The Wall Street Journal, 7 Ottobre 2014. -- Testo disponibile al sito: (28/07/2019).
  31. boyd d., Crawford K. (2011). “Six Provocations for Big Data”, presentato all’Oxford Internet Institute, A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, 21 Settembre. -- Testo disponibile al sito: (26/07/2019).
  32. Brooks D. (2013). What data can’t do. New York Times, 18 February 2013. -- Testo disponibile al sito: (14/07/2019).
  33. Burrows R., Savage M. (2014). After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data & Society, 1(1): 1-6., DOI: 10.1177/205395171454028
  34. Chetty R., Hendren N., Kline P., Saez E. (2015). Economic mobility. Pathways, Special Issue 2015 – State of the States: The Poverty and Inequality Report, pp. 55-60.
  35. Crompton R. (2008). 40 years of sociology: Some comments. Sociology, 42(6): 1218-1227., DOI: 10.1177/003803850809694
  36. Desouza K.C., Smith K.L. (2014). Big Data for Social Innovation. Stanford Social Innovation Review, Summer 2014: 39-43.
  37. DiMaggio P. (2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, July-December: 1-5., DOI: 10.1177/205395171560290
  38. Frade C. (2016). Social theory and the politics of big data and method. Sociology, 50(5): 863-877., DOI: 10.1177/003803851561418
  39. Galen D.J., Brand N., Boucherle L., Davis R., Do N., El-Baz B., Kimura I., Wharton K., Lee J. (2018). Blockchain for Social Impact: Moving Beyond the Hype. Stanford: Stanford Graduate School of Businness, Center for Social innovation, RippleWorks.
  40. Gandomi A., Haider M. (2015). Beyond the hype: Big data concepts, methods and analytics. International Journal of Information Management, 35: 137-144.
  41. (2013). Big data. -- Testo disponibile al sito: (11 /07/2019).
  42. Goldthorpe J. (2016). Sociology as a Population Science. Cambridge: Cambridge University Press.

Antonio Maturo, Marta Gibin, in "SALUTE E SOCIETÀ" 1/2020, pp. 157-174, DOI:10.3280/SES2020-001012


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content