Clicca qui per scaricare

La relazione struttura-funzione: le interazioni fra stress, immunità e fascia
Titolo Rivista: PNEI REVIEW 
Autori/Curatori: Nicola Barsotti, Marco Chiera, Diego Lanaro 
Anno di pubblicazione:  2021 Fascicolo: 1  Lingua: Italiano 
Numero pagine:  14 P. 71-84 Dimensione file:  1205 KB
DOI:  10.3280/PNEI2021-001003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più:  clicca qui   qui 

La risposta di stress, tramite il rilascio dei glucocorticoidi e delle catecolamine e modificando le risposte endocrine, neurali e immunitarie, può influenzare la struttura corporea, sia a livello tissutale sia a livello cellulare. In particolare, tramite il coinvolgimento del sistema immunitario, la risposta di stress può alterare la struttura della fascia, un tipo di tessuto connettivo presente nell’interno organismo che svolge importanti ruoli architetturali e di comunicazione per tutti gli organi. Nel presente articolo, attraverso una disamina della risposta di stress, del sistema immunitario e del tessuto connettivo, gli autori eseguono una revisione di queste interazioni alla luce della Pnei per evidenziare come struttura e funzioni corporee siano strettamente collegate. Particolare attenzione verrà posta a come fascia, muscoli e ossa risentano della risposta di stress e a come lo stile di vita possa giocare un ruolo determinante in questo equilibrio.

Keywords: Stress, Sistema immunitario, Fascia, Tessuto connettivo, Miofibroblasti, Meccanobiologia.

  1. Annunziato F., Romagnani C., & Romagnani S. (2015). The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology, 135(3), 626–635. --
  2. Ball S.L., Mann D.A., Wilson J.A., & Fisher A.J. (2016). The Role of the Fibroblast in Infl ammatory Upper Airway Conditions. The American Journal of Pathology, 186(2), 225–233. --
  3. Bao A.-M., & Swaab D.F. (2019). The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Reports, 6, 45–53. --
  4. Bellinger D.L., & Lorton D. (2014). Autonomic regulation of cellular immune function. Autonomic Neuroscience, 182, 15–41. --
  5. Berger J.M., Singh P., Khrimian Horvath T.L., Domingos A.I., Marsland A.L., Yadav V.K., Rahmouni K., Gao X.-B., & Karsenty G. (2019). Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 30(5), 890-902.e8. --
  6. Bosma-den Boer M.M., van Wetten M.-L., & Pruimboom L. (2012). Chronic infl ammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. Nutrition & Metabolism, 9(1), 32. --
  7. Bower J.E., & Irwin M.R. (2016). Mind–body therapies and control of infl amatory biology: A descriptive review. Brain, Behavior, and Immunity, 51, 1–11. --
  8. Cury P.R., Araújo V.C., Canavez F., Furuse C., & Araújo N.S. (2007). Hydrocortisone Affects the Expression of Matrix Metalloproteinases (MMP-1, -2, -3, -7, and -11) and Tissue Inhibitor of Matrix Metalloproteinases (TIMP-1) in Human Gingival Fibroblasts. Journal of Periodontology, 78(7), 1309–1315. --
  9. De Punder K., & Pruimboom L. (2015). Stress Induces Endotoxemia and Low-Grade Infl ammation by Increasing Barrier Permeability. Frontiers in Immunology, 6, 223. -- mmu.2015.00223
  10. Decaris M.L., Emson C.L., Li K., Gatmaitan M., Luo F., Cattin J., Nakamura C., Holmes W.E., Angel T.E., Peters M.G., Turner S.M., & Hellerstein M.K. (2015). Turnover Rates of Hepatic Collagen and Circulating Collagen-Associated Proteins in Humans with Chronic Liver Disease. PLOS ONE, 10(4), e0123311. --
  11. Deo S.H., Jenkins N.T., Padilla J., Parrish A.R., & Fadel P.J. (2013). Norepinephrine increases NADPH oxidase-derived superoxide in human peripheral blood mononuclear cells via α-adrenergic receptors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(10), R1124–R1132. --
  12. Dhabhar F.S. (1998). Stress-Induced Enhancement of Cell-Mediated Immunity. Annals of the New York Academy of Sciences, 840(1), 359–372. --
  13. Dum R.P., Levinthal D.J., & Strick P.L. (2016). Motor, cognitive, and affective areas of the cerebral cortex infl uence the adrenal medulla. Proceedings of the National Academy of Sciences, 113(35), 9922–9927. --
  14. Field T. (2016). Massage therapy research review. Complementary Therapies in Clinical Practice, 24, 19–31. --
  15. Fiuza-Luces C., Garatachea N., Berger N.A., & Lucia A. (2013). Exercise is the Real Polypill. Physiology, 28(5), 330–358. --
  16. Fourie W.J. (2012). Surgery and scarring. In: R. Schleip, T. Findley, L. Chaitow, & P. Huijing (Eds.), Fascia: The Tensional Network of the Human Body (p. 411–419). Edinburgh: Elsevier.
  17. Hinz B. (2010). The myofi broblast: Paradigm for a mechanically active cell. Journal of Biomechanics, 43(1), 146–155. --
  18. Joseph M.F., & Denegar C.R. (2015). Treating Tendinopathy. Clinics in Sports Medicine, 34(2), 363–374. --
  19. Kim J.-K., Shin Y.J., Ha L.J., Kim D.-H., & Kim D.-H. (2019). Unraveling the Mechanobiology of the Immune System. Advanced Healthcare Materials, 1801332. --
  20. Klein-Nulend J., Bakker A.D., Bacabac R.G., Vatsa A., & Weinbaum S. (2013). Mechanosensation and transduction in osteocytes. Bone, 54(2), 182–190. --
  21. Lee S.K., Achieng E., Maddox C., Chen S.C., Iuvone P.M., & Fukuhara C. (2011). Extracellular low pH affects circadian rhythm expression in human primary fi broblasts. Biochemical and Biophysical Research Communications, 416(3–4), 337–342. --
  22. Lee Y. (2013). The role of interleukin-17 in bone metabolism and infl ammatory skeletal diseases. BMB Reports, 46(10), 479–483. --
  23. Micallef L., Vedrenne N., Billet F., Coulomb B., Darby I.A., & Desmoulière A. (2012). The myofi broblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis & Tissue Repair, 5(S1), S5. --
  24. Nicolaides N.C., Kyratzi E., Lamprokostopoulou A., Chrousos G.P., & Charmandari E. (2015). Stress, the Stress System and the Role of Glucocorticoids. Neuroimmunomodulation, 22(1–2), 6–19. --
  25. Oldknow K.J., MacRae V.E., & Farquharson C. (2015). Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. Journal of Endocrinology, 225(1), R1–R19. --
  26. Pullar C.E. (2006). The 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fi broblasts via divergent mechanisms. Journal of Cell Science, 119(3), 592–602. --
  27. Ross M.H., & Pawlina W. (2011). Histology: a text and atlas: with correlated cell and molecular biology (6th ed). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.
  28. Schakman O., Kalista S., Barbé C., Loumaye A., & Thissen J.P. (2013). Glucocorticoid-induced skeletal muscle atrophy. The International Journal of Biochemistry & Cell Biology, 45(10), 2163–2172. --
  29. Schleip R., Klingler W., & Lehmann-Horn F. (2006). Fascia is able to contract in a smooth muscle-like manner and thereby infl uence musculoskeletal mechanics. Journal of Biomechanics, 39, S488. --
  30. Sivamani R.K., Pullar C.E., Manabat-Hidalgo C.G., Rocke D.M., Carlsen R.C., Greenhalgh D.G., & Isseroff R.R. (2009). Stress-Mediated Increases in Systemic and Local Epinephrine Impair Skin Wound Healing: Potential New Indication for Beta Blockers. PLoS Medicine, 6(1), -- e1000012.
  31. Stecco C., & Schleip R. (2016). A fascia and the fascial system. Journal of Bodywork and Movement Therapies, 20(1), 139–140. --
  32. Suzuki A., Maeda T., Baba Y., Shimamura K., & Kato Y. (2014). Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell International, 14(1), 129. --
  33. Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., & Brown R.A. (2002). Myofi broblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363. --
  34. Tracy L.E., Minasian R.A., & Caterson E.J. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in Wound Care, 5(3), 119–136. --
  35. Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., & Blaxall B.C. (2016). Cardiac Fibrosis: The Fibroblast Awakens. Circulation Research, 118(6), 1021–1040. --
  36. Van den Berg F. (2012). Extracellular matrix. In: R. Schleip, T. Findley, L. Chaitow, & P. Huijing (Eds.), Fascia: The Tensional Network of the Human Body (p. 165–170). Elsevier. --
  37. Villa J.K.D., Diaz M.A.N., Pizziolo V.R., & Martino H.S.D. (2017). Effect of vitamin K in bone metabolism and vascular calcifi cation: A review of mechanisms of action and evidences. Critical Reviews in Food Science and Nutrition, 57(18), 3959–3970. --
  38. Witowski J., Kawka E., Rudolf A., & Jörres A. (2015). New Developments in Peritoneal Fibroblast Biology: Implications for Infl ammation and Fibrosis in Peritoneal Dialysis. BioMed Research International, 2015, 1–7. --
  39. Yang E.V., Bane C.M., MacCallum R.C., Kiecolt-Glaser J.K., Malarkey W.B., & Glaser R. (2002). Stress-related modulation of matrix metalloproteinase expression. Journal of Neuroimmunology, 133(1–2), 144–150. --
  40. Yang X., Chen B., Liu T., & Chen XiaoHong. (2014). Reversal of myofi broblast differentiation: A review. European Journal of Pharmacology, 734, 83–90. --
  41. Yao W., Dai W., Jiang J.X., & Lane N.E. (2013). Glucocorticoids and osteocyte autophagy. Bone, 54(2), 279–284. --

Nicola Barsotti, Marco Chiera, Diego Lanaro, in "PNEI REVIEW" 1/2021, pp. 71-84, DOI:10.3280/PNEI2021-001003


FrancoAngeli è membro della Publishers International Linking Association associazione indipendente e no profit per facilitare l'accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche