Tourism Peaks on the Three Peaks. Using big data to monitor where, when and how many visitors impact the Dolomites UNESCO World Heritage Site
Journal Title: RIVISTA GEOGRAFICA ITALIANA 
Author/s: Dario Bertocchi, Nicola Camatti, Jan van der Borg 
Year:  2021 Issue: Language: English 
Pages:  23 Pg. 59-81 FullText PDF:  0 KB
DOI:  10.3280/rgioa3-2021oa12532
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

 
Open Access article
Click here to read the article.



Overtourism studies are increasingly focused on the relationship between tourists and residents. This includes the livability of the destination and the well-being of its residents; the growth of the tourism sector (particularly unchecked or unlimited growth), as well as the threat to natural heritage, such as beaches and mountains. A number of researchers have also highlighted the popularity of the term, as well as the lack of a theoretical understanding of the implications of it, and practical solutions to the problems posed by overtourism. This research aims to monitor the impact of, and understand the problems posed by, overtourism through approaching the phenomenon through the lens of big data analytics. The location of thisresearch is a UNESCO World Heritage site in Italy, namely the Dolomites. By using telco data, we were able to apply a big data analysis of a destination in order to monitor the movement of tourists and day visitors. By analyzing their behaviour at the destination, it has been possible to quantify daily visitors and analyse how they impact this natural site. In addition, it has beenpossible to compare statistical data with big data, which offers new insights into tourism at the destination. This research, by exploiting the value of big data in tourism, creates a heritage usage rate as well as new indicators for the measurement of overtourism. Ultimately, this can help to control tourism flows and mitigate negative externalities.
Keywords: overtourism, big data, Dolomites UNESCO, tourism flows

  1. Li J., Xu L., Tang L., Wang S. and Li L. (2018). Big data in tourism research: A literature review. Tourism Management, 68: 301-323. , DOI: 10.1016/j.tourman.2018.03.009
  2. Adie B.A., Falk M. and Savioli M. (2019). Overtourism as a perceived threat to cultural heritage in Europe. Current Issues in Tourism: 1-5. , DOI: 10.1080/13683500.2019.1687661
  3. Ahas R., Aasa A., Mark Ü., Pae T. and Kull A. (2007). Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tourism management, 28(3): 898-910. , DOI: 10.1016/j.tourman.2006.05.010
  4. Mariani M. (2019). Big data and analytics in tourism and hospitality: a perspective article. Tourism Review, 75(1): 299-303. , DOI: 10.1108/tr-06-2019-0259
  5. Id., Id., Silm S. and Tiru M. (2007). Mobile positioning data in tourism studies and monitoring: Case study in Tartu, Estonia. In Information and Communication Technologies in Tourism 2007: 119-128. , DOI: 10.1007/978-3-211-69566-1_12
  6. Alonso-Almeida M.D.M., Borrajo-Millán F. and Yi L. (2019). Are social media data pushing overtourism? The case of Barcelona and Chinese tourists. Sustainability, 11(12): 3356. , DOI: 10.3390/su11123356
  7. Anuar A.N.A., Ridzuan F.H., Jaini N., Sulaiman F.C. and Hashim N.I. (2019). The Impact of Overtourism Towards Local Community in Heritage City. J Tourism Hospitality, 8(406): 2167-0269. , DOI: 10.35248/2167-0269.19.8.406
  8. Baggio R. and Scaglione M. (2018). Strategic visitor flows and destination management organization. Information Technology & Tourism, 18(1-4): 29-42. , DOI: 10.1007/s40558-017-0096-1
  9. Bekhor S., Hirsh M., Nimre S. and Feldman I. (2008). Identifying spatial and temporal congestion characteristics using passive mobile phone data (No. 08-1534).
  10. Benner M. (2019). From overtourism to sustainability: A research agenda for qualitative tourism development in the Adriatic, Heidelberg University. MPRA Paper No 92213. Available online: https://mpra.ub.unimuenchen. de/92213/ (accessed on 20 January 2020).
  11. Bertocchi D. and Visentin F. (2019). “The Overwhelmed City”: Physical and Social Over-Capacities of Global Tourism in Venice. Sustainability: 11(24), 6937. , DOI: 10.3390/su11246937
  12. Id., Camatti N., Giove S. and van der Borg J. (2020). Venice and Overtourism: Simulating Sustainable Development Scenarios through a Tourism Carrying Capacity Model. Sustainability, 12(2): 512. , DOI: 10.3390/su12020512
  13. Butler R.W. (2019). Tourism carrying capacity research: a perspective article. Tourism Review, 5(1): 207-211. , DOI: 10.1108/tr-05-2019-0194
  14. Canestrelli E. and Costa P. (1991). Tourist Carrying Capacity. A Fuzzy Approach. Annals of Tourism Research, 18: 295-311. , DOI: 10.1016/0160-7383(91)90010-9
  15. Capocchi A., Vallone C., Pierotti M. and Amaduzzi A. (2019). Overtourism: A literature review to assess implications and future perspectives. Sustainability, 11(12): 3303., DOI: 10.3390/su11123303
  16. Cheer J.M., Milano C. and Novelli M. (2019). Tourism and community resilience in the Anthropocene: accentuating temporal overtourism. Journal of Sustainable Tourism, 27(4): 554-572. , DOI: 10.1080/09669582.2019.1578363
  17. Coccossis H. and Parpairis A. (1992). Tourism and the environment – some observations on the concept of carrying capacity. In Tourism and the Environment. Springer, Dordrecht. , DOI: 10.1007/978-94-015-9584-1_5
  18. Delaplace M., Gautherat E. and Kebir L. (2018). The Copresence of Tourists and Residents as Central to the Resilience of Urban Tourism. An Analysis of the Champs Elysées Christmas Market Based on Survey and Mobile Phone Data. Études caribéennes (2). , DOI: 10.4000/etudescaribeennes.15691
  19. Della Lucia M. and Franch M. (2017). The effects of local context on world heritage site management: the Dolomites Natural World Heritage Site, Italy. Journal of Sustainable Tourism, 25(12): 1756-1775. , DOI: 10.4324/9780429457968-5
  20. Dodds R. & Butler R. (Eds.). (2019). Overtourism: Issues, realities and solutions (vol. 1). Oldenbourg: De Gruyter. , DOI: 10.1515/9783110607369
  21. Enit (2020). Osservatorio Nazionale del turismo – Bollettino numero 9. Available at www.enit.it/wwwenit/images/multimedia/Bollettino_Ufficio_Studi/Bollettino_9/BOLLETTINO-ENIT-N9.pdf.
  22. Franch M., Martini U., Buffa F. and Parisi G. (2008). 4L tourism (landscape, leisure, learning and limit): responding to new motivations and expectations of tourists to improve the competitiveness of Alpine destinations in a sustainable way. Tourism
  23. Review. , DOI: 10.1108/16605370810861008
  24. Fuchs M., Höpken W. and Lexhagen M. (2014). Big data analytics for knowledge generation in tourism destinations – A case from Sweden. Journal of Destination Marketing & Management, 3(4): 198-209. , DOI: 10.1016/j.jdmm.2014.08.002
  25. Gantz J., and Reinsel D. (2011). Extracting value from chaos. IDC iView: 1-12. , DOI: 10.13007/115
  26. García P., Herranz R. and Javier J. (2016). Big data analytics for a passenger-centric air traffic management system. 6th SESAR Innovation Days, Delft, Netherlands. , DOI: 10.2139/ssrn.3211392
  27. González-Pérez J.M. (2019). The dispute over tourist cities. Tourism gentrification in the historic Centre of Palma (Majorca, Spain). Tourism Geographies: 1-21. , DOI: 10.1080/14616688.2019.1586986
  28. Goodwin H. (2017). The challenge of overtourism. Responsible Tourism Partnership Working Paper 4.
  29. Gössling S., Scott D. and Hall C. M. (2020). Pandemics, tourism and global change: a rapid assessment of COVID-19. Journal of Sustainable Tourism, 29(1): 1-20. , DOI: 10.1080/09669582.2020.1758708
  30. Graefe A.R., Vaske J.J. & Kuss F.R. (1984). Social carrying capacity: An integration and synthesis of twenty years of research. Leisure Sciences, 6(4): 395-431. , DOI: 10.1080/01490408409513046
  31. Gretzel U., Sigala M., Xiang Z. and Koo C. (2015). Smart tourism: foundations and developments. Electronic Markets, 25(3): 179-188. , DOI: 10.1007/s12525-015-0196-8
  32. Ead., Werthner H., Koo C. and Lamsfus C. (2015). Conceptual foundations for understanding smart tourism ecosystems. Computers in Human Behavior, 50: 558-563. , DOI: 10.1016/j.chb.2015.03.043
  33. Hospers G.J. (2019). Overtourism in European cities: From challenges to coping strategies. In CESifo Forum (vol. 20, n. 03, pp. 20-24). Institute-Leibniz Institute for Economic Research at the University of Munich.
  34. Jóhannesson G.T. and Lund K.A. (2019). Beyond overtourism: studying the entanglements of society and tourism in Iceland. In: Milano C., Cheer J. and Novelli M., Overtourism: excesses, discontents and measures in travel and tourism. , DOI: 10.1079/9781786399823.0091
  35. Kitchin R. (2013) Big data and human geography: Opportunities, challenges and risks. Dialogues in Human Geography, 3(3): 262-267. , DOI: 10.1177/2043820613513388
  36. Id. (2014). Big Data, new epistemologies and paradigm shifts. Big data & society, 1(1), , DOI: 10.1177/2053951714528481
  37. Koens K., Postma A. and Papp B. (2018). Is overtourism overused? Understanding the impact of tourism in a city context. Sustainability, 10(12), 4384. , DOI: 10.3390/su10124384
  38. Koo C., Shin S., Gretzel U., Hunter W.C. and Chung N. (2016). Conceptualization of smart tourism destination competitiveness. Asia Pacific Journal of Information Systems, 26(4): 561-576. , DOI: 10.14329/apjis.2016.26.4.561
  39. Kubo T., Uryu S., Yamano H., Tsuge T., Yamakita T. and Shirayama Y. (2020). Mobile phone network data reveal nationwide economic value of coastal tourism under climate change. Tourism Management, 77, 104010. , DOI: 10.1016/j.tourman.2019.104010
  40. Kuščer K. and Mihalič T. (2019). Residents’ attitudes towards overtourism from the perspective of tourism impacts and cooperation – The case of Ljubljana. Sustainability, 11(6), 1823. , DOI: 10.3390/su11061823
  41. Laney D. (2001), 3-D Data Management: Controlling Data Volume, Velocity and Variety, META Group Research Note, February 6.
  42. Id., Baggio R., Fuchs M. and Höepken W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12): 3514-3554. , DOI: 10.1108/ijchm-07-2017-0461
  43. Martín Martín J.M., Guaita Martínez J.M. and Salinas Fernández J.A. (2018). An analysis of the factors behind the citizen’s attitude of rejection towards tourism in a context of overtourism and economic dependence on this activity. Sustainability, 10(8), 2851. , DOI: 10.3390/su10082851
  44. McAfee A., Brynjolfsson E., Davenport T.H., Patil D.J. and Barton D. (2012). Big data: the management revolution. Harvard business review, 90(10): 60-68.
  45. Milano C., Cheer J.M. and Novelli M. (2018). Overtourism: a growing global problem. The Conversation. July 18, 2018. Available at: https://theconversation.com/overtourism-agrowing-global-problem-100029
  46. Id., Id. and Ead. (Eds.). (2019). Overtourism: Excesses, discontents and measures in travel and tourism. CABI. , DOI: 10.1079/9781786399823.0000
  47. Id., Novelli M. and Cheer J.M. (2019). Overtourism and tourismphobia: A journey through four decades of tourism development, planning and local concerns. Tourism Planning & Development, 16(4): 353-357. , DOI: 10.4324/9781003140610-1
  48. Nilsson J.H. (2020). Conceptualizing and contextualizing overtourism: the dynamics of accelerating urban tourism. International Journal of Tourism Cities. , DOI: 10.1108/ijtc-08-2019-0117
  49. Oklevik O., Gössling S., Hall C.M., Steen Jacobsen J.K., Grøtte I.P. and McCabe S. (2019). Overtourism, optimisation, and destination performance indicators: A case study of activities in Fjord Norway. Journal of Sustainable Tourism, 27(12): 1804-1824. , DOI: 10.1080/09669582.2018.1533020
  50. Papathanassis A. (2017). Over-tourism and anti-tourist sentiment: An exploratory analysis and discussion. Ovidius University Annals, Economic Sciences Series, 17(2): 288-293.
  51. Park S., Xu Y., Jiang L., Chen Z., and Huang S. (2020). Spatial structures of tourism destinations: A trajectory data mining approach leveraging mobile big data. Annals of Tourism Research, 84, 102973. , DOI: 10.1016/j.annals.2020.102973
  52. Pecot M. and Ricaurte-Quijano C. (2019). ‘Todos a Galápagos?’ Overtourism in wilderness areas of the Global South. In: Milano C., Cheer J.M. and Novelli M., Overtourism: excesses, discontents and measures in travel and tourism. , DOI: 10.1079/9781786399823.0070
  53. Peeters P., Gössling S., Klijs J., Milano C., Novelli M., Dijkmans C., Eijgelaar E., Hartman S., Heslinga J., Isaac R., Mitas O., Moretti S., Nawijn J., Papp B. and Postma A. (2018). Research for TRAN Committee – Overtourism: impact and possible policy responses, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels.
  54. Psimopoulos A., Maresa M., Vasileiadis A. and Tsarapatsanis V. (2016). Mobile data management for smart urban tourism: The case of Thessaloniki. Conference: 5th ASECU Youth International Conference At: Faculty of Economics, University of Belgrade.
  55. Qiu R.T., Park J., Li S. and Song H. (2020). Social costs of tourism during the COVID-19 pandemic. Annals of Tourism Research, 84, 102994. , DOI: 10.1016/j.annals.2020.102994
  56. Raun J., Ahas R. and Tiru M. (2016). Measuring tourism destinations using mobile tracking data. Tourism Management, 57: 202-212. , DOI: 10.1016/j.tourman.2016.06.006
  57. Salas-Olmedo M.H., Moya-Gómez B., García-Palomares J.C. and Gutiérrez J. (2018). Tourists’ digital footprint in cities: Comparing Big Data sources. Tourism Management, 66: 13-25. , DOI: 10.1016/j.tourman.2017.11.001
  58. Saluveer E., Raun J., Tiru M., Altin L., Kroon J., Snitsarenko T. and Silm S. (2020). Methodological framework for producing national tourism statistics from mobile positioning data. Annals of Tourism Research, 81, 102895. , DOI: 10.1016/j.annals.2020.102895
  59. Scuttari A., Orsi F. and Bassani R. (2019). Assessing the tourism-traffic paradox in mountain destinations. A stated preference survey on the Dolomites’ passes (Italy).
  60. Journal of Sustainable Tourism, 27(2): 241-257. , DOI: 10.1080/09669582.2018.1428336
  61. Stanchev R. (2018). The most affected European destinations by over-tourism. Available at: https://dspace.uib.es/xmlui/bitstream/handle/11201/148140/Stanchev_Rostislav.pdf?sequenc=1&isAllowed=y
  62. Steenbruggen J., Tranos E. & Nijkamp P. (2015). Data from mobile phone operators: A tool for smarter cities? Telecommunications Policy, 39(3-4): 335-346. , DOI: 10.1016/j.telpol.2014.04.001
  63. Tempesta T. and Thiene M. (2000, September). Benefits and costs of tourism and outdoor recreation in the Natural Park of the Ampezzo Dolomites (Veneto-Italy). In Proceeding of the international conference on Agritourism and Rural Tourism. A key option for the
  64. Rural Integrated and Sustainable Development Strategy, Perugia.
  65. UNWTO (2018). ‘Overtourism’? Understanding and Managing Urban Tourism Growth beyond Perceptions. , DOI: 10.18111/9789284419999
  66. Id. (2019a). ‘Overtourism’? Understanding and Managing Urban Tourism Growth beyond Perceptions. Volume 2: Case Studies. , DOI: 10.18111/9789284420629.4
  67. Id. (2019b). Overtourism? New UNWTO Report Offers Case Studies to Tackle Challenges.
  68. Van der Borg J., Costa P. and Gotti G. (1996). Tourism in European heritage cities. Annals of Tourism Research, 23(2): 306-321. , DOI: 10.1016/0160-7383(95)00065-8
  69. Vecco M. and Caust J. (2019). UNESCO, cultural heritage sites and tourism: A paradoxical relationship. In: Pechlaner H., Innerhofer E., Erschbamer G., Overtourism. Tourism Management and Solutions. Routledge. , DOI: 10.4324/9780429197987-5
  70. Visentin F., Bertocchi D. (2019). Venice: An Analysis of Tourism Excesses in an Overtourism Icon. In: Milano C., Cheer J., Novelli M., eds., Overtourism: Excesses, discontents and measures in travel and tourism. Wallingford, MA: CABI. , DOI: 10.1079/9781786399823.0018
  71. Wall G. (2020). From carrying capacity to overtourism: a perspective article. Tourism Review, 75(1): 212-215. , DOI: 10.1108/tr-08-2019-0356
  72. Xiang Z., Schwartz Z., Gerdes Jr J.H. and Uysal M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44: 120-130. , DOI: 10.1016/j.ijhm.2014.10.013
  73. Yang X., Pan B., Evans J.A. and Lv B. (2015). Forecasting Chinese tourist volume with search engine data. Tourism Management, 46: 386-397. , DOI: 10.1016/j.tourman.2014.07.019
  74. Zaragozí B., Trilles S. and Gutiérrez A. (2021). Passive Mobile Data for Studying Seasonal Tourism Mobilities: An Application in a Mediterranean Coastal Destination. ISPRS International Journal of Geo-Information, 10(2), 98. , DOI: 10.3390/ijgi10020098

Dario Bertocchi, Nicola Camatti, Jan van der Borg, in "RIVISTA GEOGRAFICA ITALIANA" 3/2021, pp. 59-81, DOI:10.3280/rgioa3-2021oa12532

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content