Clicca qui per scaricare

Creando los primeros modelos matemáticos: análisis de un ciclo de modelización a partir de un problema real en Educación Infantil
Titolo Rivista: CADMO 
Autori/Curatori: Ximena Toalongo-Guamba, Ángel Alsina, César Trelles-Zambrano, María Salgado 
Anno di pubblicazione:  2021 Fascicolo: 1  Lingua: Spagnolo 
Numero pagine:  18 P. 81-98 Dimensione file:  253 KB
DOI:  10.3280/CAD2021-001006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più:  clicca qui   qui 




The modelling process carried out by 19 children aged 5-6 years in the context of a real problem is analysed to understand how temperature works and how it is measured. To carry out the analysis, the previously validated instrument "Rubric to Evaluate Mathematical Modeling Processes" (REM¬MOP) is used, which includes seven components related to the modeling cycle (understanding, structuring, mathematization, mathematical work, in¬terpretation, validation and presentation) and the corresponding indicators. The results show that, during this cycle: 1) children develop a first model to determine where the numbers are on the thermometer and how they are interpreted, based on the mathematical knowledge they mobilize; 2) they present important deficits especially in the last phases of the modeling cycle. It is concluded that it is necessary to promote the professional development of teachers to incorporate this type of activity from an early age.
Keywords: mathematical modelling, modelling cycle, assessment in math¬ematics, teaching practices, Early Childhood Education.

  1. Alsina, Á. (2012), “Más allá de los contenidos, los procesos matemáticos en Educación Infantil”, Edma 0-6: Educación Matemática en la Infancia, 1 (1), pp. 1-14.
  2. Alsina, Á. (2016), “Diseño, gestión y evaluación de actividades matemáticas competenciales en el aula”, Épsilon, Revista de Educación Matemática, 33 (1), pp. 7-29.
  3. Alsina, Á., Liñán-García, M., Muñoz-Catalán, M.C. (2018), El número y las operaciones matemáticas en Educación Infantil. En M.C. Múñoz-Catalán, J. Carillo (ed. por), Didáctica de las Matemáticas para maestros de Educación Infantil. Madrid: Paraninfo, pp. 81-144.
  4. Alsina, C., García, L.M., Gómez, J., Romero, S. (2007), “Modelling in science education and learning”, SUMA, 54, pp. 51-53.
  5. Bliss, K., Libertini, J. (2019), What is mathematical modeling? En S. Garfunkel, M. Montgomery (Eds), Guidelines for assessment & instruction in mathematical modeling education. Philadelphia: Consortium for Mathematics and Its Applications and Society for Industrial and Applied Mathematics, pp. 7-21.
  6. Blum, W. (2015), Quality Teaching of Mathematical Modelling: What Do We Know, What Can We Do?. En S. Cho (Ed), Proceeding of the 21th International Congress on Mathematical Education. Cham: Springer, pp. 73-96.
  7. Blum, W., Borromeo, R. (2009), “Mathematical Modelling: Can I Be Taught And Learn?”, Journal of Mathematical Modeling and Application, 1 (1), pp. 45-58. Blum, W., Leiβ, D. (2007), How do students and teachers deal with modelling problems? En C. Haines, P. Galbraith, W. Blum, S. Khan (Eds), Mathematical Modelling: Education, Engineering and Economics. Cambridge: Woodhead Publishing Limited, pp. 222-231.
  8. Borromeo, R. (2010), “On the influence of mathematical thinking styles on learners’ modelling behaviour”, Journal für Mathematik Didaktik, 31 (1), pp. 99-118.
  9. Carreira, S., Amado, N., Lecoq, F. (2011), Mathematical Modeling of Daily Life in Adult Education: Focusing on the Notion of knowledge. En G. Kaiser, W. Blum, R. Borromeo Ferri, G. Stillman (Eds), Trends in teaching and Learning of Mathematical Modeling. Heidelberg: Springer, pp. 199-210.
  10. Corbalán, F. (2011), Los recursos que utilizar. En J.M. Goñi (ed. por), Didáctica de las matemáticas. Barcelona: Graó, pp. 53-74.
  11. English, L.D. (1996), Children’s reasoning in solving novel problems of deduction. En L. Puig, Á. Gutiérrez (Eds), Proceedings of the 20th PME International Conference 2, pp. 329-336.
  12. English, L.D. (2004). Promoting the development of young children’s mathematical and analogical reasoning. En L.D. English (Ed.), Mathematical and analogical reasoning of young learners. Mahwah: Lawrence Erlbaum, pp. 210-215.
  13. English, L.D. (2006), “Mathematical Modeling in the Primary School: Children’s construction of a consumer guide”, Educational Studies in Mathematics, 63, pp. 303-323.
  14. English, L.D. (2010), “Young Children’s Early Modelling with Data”, Mathematics Education Research Journal, 22 (2), pp. 24-47.
  15. English, L.D. (Ed) (1997), Mathematical reasoning: Analogies, metaphors, and images. Mahwah: Lawrence Erlbaum.
  16. English, L.D., Watson, J. (2018), “Modelling with authentic data in sixth grade”, ZDM Mathematics Education, 50, pp. 103-115.
  17. English, L.D., Watters, J.J. (2005), “Mathematical Modelling in the Early School Years”, Mathematics Education Research Journal, 16 (3), pp. 58-79.
  18. Ferrer, M., Fortuny, J.M., Morera, L. (2014), “Efectos de la actuación docente en la generación de oportunidades de aprendizaje matemático”, Enseñanza de las ciencias, 32 (3), pp. 385-405.
  19. Gallart, C., Ferrando, I., García-Raffi, L. (2015), “Análisis competencial de una tarea de modelización abierta”, Números, 88, pp. 93-103.
  20. Gallart, C., Ferrando, I., García-Raffi, L. (2019), “Modelización matemática en la educación secundaria: manual de uso”, Modelling in Science Education and Learning, 12 (1), pp. 71-86.
  21. Geiger, V. (2011), Factors Affecting Teachers’ Adoption of Innovative Practices with Technology and Mathematical Modeling. En G. Kaiser, W. Blum, R. Borromeo Ferri, G. Stillman (Eds), Trends in Teaching and Learning of Mathematical Modeling ICTMA 14. Heidelberg: Springer, pp. 305-314.
  22. Girnat, B., Eichler, A. (2011), Secondary Teacher`s Beliefs on Modeling in Geometry and Stochastics. En G. Kaiser, W. Blum, R. Borromeo Ferri, y G. Stillman (Eds), Trends in Teaching and Learning of Mathematical Modeling ICTMA 14. Heidelberg: Springer, pp. 75-84.
  23. Greefrath, G. (2011). Using Technologies: New Possibilities of Teaching and learning Modeling - Overview. En G. Kaiser, W. Blum, R. Borromeo Ferri, G. Stillman (Eds), Trends in teaching and Learning of Mathematical Modeling ICTMA 14. Heidelberg: Springer, pp. 301-304.
  24. Kaiser, G. (1995), Realitätsbezüge im Mathematikunterricht – Ein Überblick über die aktuelle und. En G. Graumann, T. Jahnke, G. Kaiser, J. Meyer (hrsg.), Materialen für einen realitätsbezogenen. Hildesheim: Franzbecker, pp. 64-84.
  25. Kaiser, G., Blomhøj, M., Sriraman, B. (2006), “Towards a didactical theory for mathematical modeling”, ZDM Mathematics Education, 38 (2), pp. 82-85.
  26. Kaiser, G., Sriraman, B. (2006), “A global survey of international perspectives on modelling in mathematics education”, Zentralblatt Für Didaktik Der Mathematik, 38 (3), pp. 302-310.
  27. Lawshe, C.H. (1975), “A quantitative approach to content validity”, Personnel Psychology, 28 (4), pp. 563-575.
  28. Lesh, R., Hoover, M., Hole, B., Kelly, A., Post, T. (2000), Principles for developing thought-revealing activities for students and teachers. En A. Kelly, R. Lesh, A. Kelly, R. Lesh (Eds), Handbook of Research Desing in Mathematics and Science Education. Mahwah: Lawrence Erlbaum, pp. 591-645.
  29. McMillan, J.H., Schumacher, S. (2005), Investigacion educativa. Madrid: Pearson Educación SA.
  30. National Governors Association Center for Best Practices, Council of Chief State School Officers (2010), Common Core State Standards Mathematics. National Governors Association Center for Best Practices; Council of Chief State School Officers.
  31. NCTM – National Council of Teachers of Mathematics (2000), Principles and Standards for School Mathematics. NCTM.
  32. NCTM – National Council of Teachers of Mathematics (2014), Principles to actions: Ensuring mathematical success for all. NCTM.
  33. NCTM –National Council of Teachers of Mathematics (1989), Curriculum and Evaluation Standars for School Matematics. NCTM.
  34. Ortiz, J., Rico, L., Castro, E. (2007), Mathematical Modelling: A teacher`s training study. En C. Haines, P. Galbraith, W. Blum, S. Khan (Eds), Mathematical Modelling: Education, Engineering and Economics. Cambridge: Woodhead Publishing Limited, pp. 249-441.
  35. Peter-Koop, A. (2009), Teaching and Understanding Mathematical Modelling through Fermi-Problems. En B. Clarke, B. Grevholm, R. Millman (Eds), Education Mathematics Teacher 4. Tasks in Primary Mathematics Teacher Education: Purpose, Use and Exemplars. Secaucus (NJ): Springer, pp. 131-145.
  36. Porras-Lizano, K., Fonseca-Castro, J. (2015), “Aplicación de actvidades de modelización matemática en la educación secundaria costarricense”, Uniciencia, 29 (1), pp. 42-57. Reeuvijk, M.V. (1997), “Las matemáticas en la vida cotidiana y la vida cotidiana en las matemáticas”, UNO, Revista de Didáctica de las Matemáticas, 12, pp. 9-16.
  37. Ruiz-Higueras, L. (2005), La construcción de los primeros conocimientos numéricos. En M.C. Chamorro, Didáctica de las Matemáticas para Educación Infantil. Madrid: Pearson Educación, pp. 181-219.
  38. Ruiz-Higueras, L., García, F.J. (2011), “Análisis de praxeologías didácticas en la gestión de procesos de Modelización Matemática en la Escuela Infantil”, Revista Latinoamericana de Investigación en Matemática Educativa, 14 (1), pp. 41-70.
  39. Ruiz-Higueras, L., García, F.J., Lendínez, E.M. (2013), “La actividad de modelización en el ámbito de las relaciones espaciales en la Educación Infantil”, Edma 0-6: Educación Matemática en la Infancia, 2 (1), pp. 95-118.
  40. Toalongo-Guamba, X., Trelles-Zambrano, C., Alsina, Á. (2020), Design, construction and validation of a rubric to evaluate mathematical modeling in the different educational stages, manuscrito presentado para su publicación.
  41. Trelles-Zambrano, C., Alsina, Á. (2017), “Nuevos Conocimientos para una Educación Matemática del S. XXI: panorama internacional de la modelización en el currículo”, UNIÓN, Revista Iberoamericana de Educación Matemática, 51, pp. 140-163.
  42. Trigueros, M. (2009), “El uso de la modelación en la enseñanza de las matemáticas”, Innovación Educativa, 9 (46), pp. 75-87.
  43. Tristán-López, A. (2008), “Modificación al modelo de Lawshe para el dictámen cuantitativo de la validez de contenido de un instrumento objetivo”, Avances en Medición, 6, pp. 37-48.
  44. Wess, R., Greefrath, G. (2019), Professional competencies for teaching mathematical modelling-supporting the modelling-especific task competency of prospective teachers in the teaching laboratory. En U.T. Jankvist, M. van den Heuvel-Panhuizen, M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht (NL): Grupo Freudenthal, Instituto Freudenthal, Universidad de Utrecht y ERME, pp. 1276-1283.

Ximena Toalongo-Guamba, Ángel Alsina, César Trelles-Zambrano, María Salgado, in "CADMO" 1/2021, pp. 81-98, DOI:10.3280/CAD2021-001006

   

FrancoAngeli è membro della Publishers International Linking Association associazione indipendente e no profit per facilitare l'accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche