Big Data and evaluation: background, benefits and challenges

Journal title RIV Rassegna Italiana di Valutazione
Author/s Hendrikus Bastiaan Maria Leeuw, Frank Willemsen, Franciscus Leonardus Leeuw
Publishing Year 2018 Issue 2017/68
Language Italian Pages 21 P. 27-47 File size 675 KB
DOI 10.3280/RIV2017-068003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This article provides an overview of the opportunities, challenges, and obstacles that Big Data (Analytics) presents in the field of evaluation. In addition to sketching the background of this new and interesting area of research and data source, the article also presents some developments on how Big Data (Analytics) have been used in recent years. It is clear that Big Data (Analytics) present remarkable opportunities for evaluators to analyze policies in innovative ways. At the same time, these opportunities do not seem to have been exploited so far. This may be the consequence of the challenges of using Big Data (Analytics), which is also discussed in this article. The article concludes arguing that Big Data (Analytics) will probably become more and more important in the field of evaluation and policy research.

Keywords: Evaluation; Big Data; Innovation; Methodology.

  1. World Bank Group. (2016). World Development Report: Digital Dividends. Washington DC: International Bank for Reconstruction and Development/The World Bank.
  2. Althoff, T., Sosič, R., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336-339.
  3. Ayers, J., Althouse, B., Ribisl, K., & Emery, S. (2014). Digital Detection for Tobacco Control: Online Reactions to the 2009 U.S. Cigarette Exicse Tax Increase. Nicotine & Tobacco Research, 16(5), 576-583.
  4. Bader, M., Mooney, S., Bennet, B., & Rundle, A. (2017). The Promise, Practicalities, and Perils of Virtually Auditing Neighborhoods Using Google Street View. The ANNALS of the American Academy of Political and Social Science, 669(1), 18-40.
  5. Bamberger, M. (2016). Integrating Big Data into the Monitoring and Evaluation of Development Programmes: UN Global Pulse.
  6. Bamberger, M. (2017). Building bridges between evaluators and big data analysts. Retrieved 22-11-2017, from -- http://merltech.org/building-bridges-between-evaluators-and-big-data-analysts/
  7. Bennet, C., & Bayley, R. (2015). Privacy Protection in the Era of ‘Big Data’: Regulatory Challenges and Social Assessments. In B. van der Sloot, D. Broeders & E. Schrijvers (Eds.), Exploring the Boundaries of Big Data. Amsterdam: Amsterdam University Press.
  8. Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, 88, 2-9.
  9. Cormack, A. (2016). Downstream Consent: A Better Legal Framework for Big Data. Journal of Information Rights, Policy and Practice, 1(1).
  10. Dugas, A., Hsieh, H., Levin, S., Pines, J., Mareiniss, D., Mohareb, A., Rothman, R. (2012). Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 54(4), 463-469.
  11. Forss, K., & Norén, J. (2017). Using "Big Data" for Equity-Focused Evaluation – Understanding and Utilizing the Dynamics of Data Ecosystems. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data and Evaluation. New Brunswick, NJ: Transaction Publishers.
  12. Hoeren, T. (2017). Big data and the legal framework for data quality. International Journal of Law and Information Technology, 25(1), 26-37.
  13. Høljund, S., Olejniczak, K., Petersson, G., & Rok, J. (2017). The Current Use of Big Data in Evaluation. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data and Evaluation. New Brunswick, NJ: Transaction Publishers.
  14. Kang, H., & Kang, H. (2017). Prediction of crime occurrence from multimodal data using deep learning. PLOS ONE, 12(4).
  15. Leeuw, F., & Donaldson, S. (2015). Theory in evaluation: Reducing confusion and encouraging debate. Evaluation, 21(4), 467-480.
  16. Leeuw, F. L., & Leeuw, B. (2012). Cyber society and digital policies: Challenges to evaluation? Evaluation, 18(1), 111-127.
  17. Leeuw, F. L., & Vaessen, J. (2009). Impact evaluations and development : NONIE guidance on impact evaluation. In W. B. Group (Ed.). Washington DC.
  18. Leeuw, H. B. M. (2017a). Punish, Seduce or Persuade: An Empirical Assessment of Anti-Piracy Interventions. Den Haag: Eleven International Publishing.
  19. Leeuw, H. B. M. (2017b). Using Big Data to Study Digital Piracy and the Copyright Alert System. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data and Evaluation. New Brunswick, NJ: Transaction Publishers.
  20. Lemire, S., & Petersson, G. (2017). Big Bang or Big Bust? The Role and Implications of Big Data in Evaluation. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data, and Evaluatiom (pp. 215-236). New Brunswick: Transaction Publisher.
  21. Letouzé, E., Areais, A., & Jackson, S. (2016). The evaluation of complex development interventions in the age of Big data. In M. Bamberger, J. Vaessen & E. Raimondo (Eds.), Dealing With Complexity in Development Evaluation: A Practical Approach. Thousand Oaks: Sage Publishing.
  22. Ludwig, J., Kling, J., & Mullainathan, S. (2011). Mechanisms Experiments and Policy Evaluations. Journal of Economic Perspectives, 25(3), 17-38.
  23. Mars, B., Heron, J., Biddle, L., Donovan, J. L., Holley, R., Piper, M., Gunnell, D. (2015). Exposure to, and searching for, information about suicide and self-harm on the Internet: Prevalence and predictors in a population based cohort of young adults. Journal of Affective Disorders, 185, 239-245.
  24. Masango, S. M., Rataemane, S. T., & Motojesi, A. A. (2008). Suicide and suicide risk factors: A literature review. South African Family Practice, 50(6), 25-29. DOI: 10.1080/20786204.2008.1087377
  25. Nielsen, M. (2015). Who Owns Big Data? MIT Technology Review. Retrieved 07-08-2017, from -- https://www.technologyreview.com/s/533856/who-owns-big-data/
  26. Park, S., Lee, J., & Song, W. (2017). Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data. Journal of Travel & Tourism Marketing, 34(3), 357-368. DOI: 10.1080/10548408.2016.117065
  27. Petersson, G., & Breul, J. (2017). Cyber Society, Big Data and Evaluation. New Brunswick, NJ: Transaction Publishers.
  28. Petersson, G., Leeuw, F., & Olejniczak, K. (2017). Cyber Society, Big Data, and Evaluation: A Future Perspective. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data, and Evaluation (pp. 237-254). New Brunswick: Transaction Publisher.
  29. Stephens-Davidowitz, S. (2017). Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are. New York: Harper Collins Publishers.
  30. Wilkinson, M., & e.a. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3.
  31. Willemsen, F., & Leeuw, F. (2017). Big Data, Real-World Events, and Evaluations. In G. Petersson & J. Breul (Eds.), Cyber Society, Big Data and Evaluation. New Brunswick, NJ: Transaction Publishers.
  32. Bail, C. (2014). The Cultural Environment: Measuring Culture with Big Data. Theory and Society, 43(3), 465-482.

Hendrikus Bastiaan Maria Leeuw, Frank Willemsen, Franciscus Leonardus Leeuw, Big Data and evaluation: background, benefits and challenges in "RIV Rassegna Italiana di Valutazione" 68/2017, pp 27-47, DOI: 10.3280/RIV2017-068003