Big Data, Intelligenza Artificiale e Valutazione: cosa accade in Italia

Journal title RIV Rassegna Italiana di Valutazione
Author/s Francesco Mazzeo Rinaldi, Ornella Occhipinti
Publishing Year 2024 Issue 2023/85-86
Language Italian Pages 23 P. 185-207 File size 270 KB
DOI 10.3280/RIV2023-085010
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

In this article, we will address an aspect many have considered "exotic" in the evolving evaluation landscape. We are referring to the diverse world of Big Data (BD) and Artificial Intelligence (AI), which arguably repre-sent one of the significant innovations in the field of evaluation and will likely continue to grow and evolve in the decades to come. We will discuss three specific aspects: 1) the opportunities and main uses that BD and AI offer to evaluation; 2) the challenges and risks that evaluation research and practice are facing concerning the 'new' availabil-ity of data and analysis methods not classically referable to the world of evaluators; 3) The state of diffusion in Italy of BD and AI in evaluation research and practice.

Keywords: Big data; Artificial intelligence; Data Science; Bias; Evaluation.

  1. Addeo, F., Punziano, G., Mauceri, S. (2022) The Impact of Digital on Research, Socialisation, and Communication Processes. Italian Journal of Sociology of Education, 14(3), 1-16. DOI: 10.14658/PUPJ-IJSE-2022-3-1
  2. Anderson, C., (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired Magazine. -- Disponibile online: http://www.wired.com/science/discoveries/magazine/16-07/pb_theory.
  3. Bamberger, M. (2017) Integrating big data into the monitoring and evaluation of development programs. UN Global Pulse with support from the Rockefeller Foundation.
  4. Baro, E., Degoul, S., Beuscart, R., & Chazard, E. (2015). Toward a literature-driven definition of big data in healthcare. BioMed research international, 2015.
  5. Bertermann K., Robins A., Bamberger M., Higdon G.L,, Raftree L. (2020) Big Data to Data Science. Moving from “What” to “How” in the MERL Tech Space. MERL Tech. Volume 3
  6. Brayne S. (2017). Big Data Surveillance: The Case of Policing. American Sociological Review 82(5) 977-1008.
  7. Corposanto, C., & Molinari, B. (2020). Dai Big Data alla valutazione passando per la metodologia della ricerca. In Big Data e processi decisionali (pp. 73-83). Egea.
  8. Cox, M., Ellsworth, D., (1997). Application-controlled demand paging for out-of-core visualization. Proceedings of the 8th conference on Visualization, pp. 235-244.
  9. Demchenko, Y., De Laat, C., & Membrey, P. (2014). Defining architecture components of the Big Data Ecosystem. In 2014 International conference on collaboration technologies and systems (CTS) (pp. 104-112). IEEE.
  10. Einav L., Levin J.D. (2013). The data revolution and economic analysis, NBER Working Paper Series No. 19035. http://www.nber.org/papers/w19035
  11. Finucane, M.M., Martinez, I., & Cody, S. (2018). What works for whom? A Bayesian approach to channeling big data streams for public program evaluation. American Journal of Evaluation, 39, 109–122.
  12. Gantz, J., Reinsel E. (2011). Extracting Value from Chaos, IDC’s Digital Universe Study, sponsored by EMC.
  13. Gibin, M., & Maturo, A. (2020). No profit e impatto sociale al tempo dei Big Data: tra Quantified Context e Blockchain. In "Salute e società : XIX, 1, 2020, Milano : FrancoAngeli, 2020 (pp.157-174)
  14. Giuffrida G., Mazzeo Rinaldi F. (2020) Big Data, Intelligenza Artificiale e Machine Learning: tra discriminazione e responsabilità algoritmica, in Gozzo S. et al. (eds.) Uso dei Big Data nei processi decisionali. Egea, Milano. pp 31-46
  15. Gozzo, S., Pennisi, C., Asero, V., & Sampugnaro, R. (2020). Big Data e processi decisionali: strumenti per l’analisi delle decisioni giuridiche, politiche, economiche e sociali. EGEA spa.
  16. Hojlund, S., Olejniczak, K., Petersson, G. P., & Rok, J. (2017). The current use of big data in evaluation. In G. J. Petersson & J. D. Breul (Eds.), Cyber society, big data, and evaluation (Vol. 24, pp. 35–60). New York, NY: Routledge.
  17. Italian Journal of Sociology of Education, 14(3).
  18. Italian Sociological Review, 11(4S), 153.
  19. Italian Sociological Review, 12(7S), 617.
  20. Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013). Big data: Issues and challenges moving forward. In R. H. Sprague Jr. (Ed.), 2013 46th Hawaii international conference on system sciences, pp. 995–1004. IEEE.
  21. Kumar, P., Manash, E. (2019), Deep learning: a branch of machine learning, J. Phys.: Conf. Ser. 1228 012045. DOI 10.1088/1742-6596/1228/1/012045.
  22. Lazer D., Radford J. (2017). Data ex Machina: Introduction to Big Data. Annual Review of Sociology 43(1) 19-39.
  23. Letouzé, E. (2012). Big data for development: Opportunities and challenges. United Nations Global Pulse.
  24. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H., (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute
  25. Martocchia Diodati, N. (2017). Machine Learning per le scienze sociali, in Natale, P. e Airoldi, M. (a cura di), Web & Social Media. Le tecniche di analisi, Maggioli-Apogeo, Santarcangelo di Romagna (RN), pp. 97-109.
  26. Mayer-Schonberger V, Cukier K. (2013). Big Data: a revolution that will change how we live, work and think. London: John Murray.
  27. Mazzeo Rinaldi F., Giuffrida G. (2018) (eds.) Numero monografico su Big Data e Valutazione in. RIV: Rassegna Italiana di Valutazione: 68, 2, Milano: FrancoAngeli.
  28. Mazzeo Rinaldi, F, Giuffrida, G., & Negrete, T. (2017). Real-Time Monitoring and Evaluation—Emerging News as Predictive Process Using Big Data-Based Approach. In Cyber Society, big data, and Evaluation (pp. 191-214). Routledge.
  29. Mervis, J. (2012). Agencies rally to tackle big data. Science, 336(6077), 22.
  30. Nielsen, S.B., Mazzeo Rinaldi, F., Petersson, G. (eds.) (2024). Artificial Intelligence and Evaluation. Emerging Technologies and their implications for evaluation. London: Routledge.
  31. Petersson, G.K., Breul, J.D (eds) (2017). Cyber society, big data and evaluation. Comparative policy evaluation. Volume 24. Routledge
  32. Pozzer, G., (2019) Pianificazione della città e pratiche valutative : un'euristica dei Big Data. In "RIV: rassegna italiana di valutazione : 73, 1, 2019, Milano : FrancoAngeli
  33. Punziano, G., Delli Paoli, A. (Eds.). (2021). Handbook of research on advanced research methodologies for a digital society. IGI Global.
  34. Rezzani, A. (2013), Big Data. Architettura, tecnologie a metodi per l’utilizzo di grandi basi dati, Maggioli, Santarcangelo di Romagna.
  35. Sadurni N. (2022). Alan Turing, l’arma segreta degli Alleati. Storica, National Geographic https://www.storicang.it/a/alan-turing-larma-segreta-degli-alleati_15245
  36. Scriven, M. (2019). The checklist imperative. In C. A. Christie & M. C. Alkin (Eds.), Theorists’ Models in Action: A Second Look. New Directions for Evaluation, 163, 49–60.
  37. Weiss, S.M., Indurkhya, N., (1998). Predictive data mining: a practical guide. Morgan Kaufmann
  38. York P., Bamberger M. (2020). Measuring Results and Impact in the Age of Big Data. Rockefeller Foundation, New York, NY.

Francesco Mazzeo Rinaldi, Ornella Occhipinti, Big Data, Intelligenza Artificiale e Valutazione: cosa accade in Italia in "RIV Rassegna Italiana di Valutazione" 85-86/2023, pp 185-207, DOI: 10.3280/RIV2023-085010