Aquaponic as sustainable innovation for food production

Titolo Rivista RIVISTA DI STUDI SULLA SOSTENIBILITA'
Autori/Curatori Carlo Bibbiani, Alessandro Campiotti, Luca Incrocci, Alberto Pardossi, Baldassarre Fronte, Corinna Viola
Anno di pubblicazione 2017 Fascicolo 2016/2
Lingua Inglese Numero pagine 10 P. 249-258 Dimensione file 148 KB
DOI 10.3280/RISS2016-002022
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

To better understand aquaponic, it is important to describe the socio-demographic context and the role of agriculture in a future perspective. Due to the increasing world population, by 2050 food production should be increased of not less than 70%. Nowadays the agriculture sector is playing a key role in ensuring food security and in the upcoming context it should also face one of the greatest dilemmas of the modern age, which consist in producing more food using less resources and minimizing the environmental impacts. To cope with this challenge, the aquaculture technology seems to be one of the most suitable production systems able to face this dilemma. In this paper, the technical and technological aspects of the Integrated Aquaponic System (IAS) are described. The integration of an aquaponic system with algae, worms and insects production it is also suggested for improving sustainability.

Il sistema produttivo costituito dall’impresa produttiva dell’acquacoltura si configura di estremo interesse in termini di produzione di cibo soprattutto se consideriamo le prospettive socio-demografico che, sulla base di valutazioni FAO, vedono la popolazione entro il 2050 aumentare di una percentuale non inferiore al 70% rispetto alla popolazione attuale. Tale aumento demografico comporterà, secondo la FAO, la necessità di garantire la produzione di cibo senza, tuttavia, aumentare il prelievo di risorse naturali e l’emissione in atmosfera di gas ad effetto serra. L’acquacoltura, infatti, rappresenta uno dei comparti produttivi potenzialmente in grado di soddisfare l’aumento sostenibile delle richieste di cibo. Questo lavoro riporta una descrizione delle tecnologie che si riferiscono ai Sistemi di Acquacoltura Integrata (SAI) e descrive brevemente gli aspetti di produzione integrata tra l’acquacoltura, la produzione di alghe, vermi e insetti.

Keywords:Acquacoltura, sicurezza alimentare, agricoltura, sostenibilità.

  1. Adler J., Campbell B., Karpouzi V., Kaschner K., Pauly D. (2008). Forage fish: from ecosystem to markets. Annu. Rev. Env. Resour., 33: 66-153.
  2. Al-Hafedh Y.S., Alam A., Beltagi M.S. (2008). Food production and water conservation in a recirculating Aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J. World Aquacult. Soc., 3, 4: 510-520.
  3. Alessio G., Allegrucci G., Angle G. (2001). Acquacoltura responsabile - Verso le produzioni acquatiche del terzo millennio. Roma: Unimar-Uniprom,.
  4. Becker E.W. (2007). Micro-algae as a source of protein. Biotech. Adv., 25, 2: 207-210.
  5. Bernstein S. (2011). Aquaponic gardening: a step-by-step guide to raising vegetables and fish together. Gabriola Island, Canada: New Society Publishers.
  6. Bischoff A.A., Fink P., Waller U. (2009). The fatty acid composition of Nereis diversicolor cultured in an integrated recirculated system: Possible implications for aquaculture. Aquaculture, 296: 271-276.
  7. Brown N., Eddy S., Plaud S. (2011). Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture, 322-323: 177-183.
  8. Doucha J., Lívanský K, Kotrbáček V., Zachleder V. (2009). Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Appl. Microbiol. Biotechnol., 83: 1001-1008.
  9. Ebeling J.M., Timmons M.B. (2012). Recirculating Aquaculture Systems. In: Aquaculture Production Systems. Hoboken, NJ, USA: Tidwell, J.H. Ed, John Wiley & Sons.
  10. FAO (2013). Edible insects
: Future prospects for food and feed security.
  11. FAO (2014). Edible insects in Lao PDR: building on tradition to enhance food security.
  12. FAO (2014). Small-scale Aquaponic food production – Integrated fish and plant farming.
  13. FAO (2011). The State of World Fisheries and Aquaculture 2010.
  14. Goddek S., Delaide B., Mankasingh U., Ragnarsdottir K.V., Jijakli H., Thorarinsdottir, R. (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability, 7: 4199-4224.
  15. Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S. M., Toulmin C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327: 812-818.
  16. Graber A., Junge R. (2009). Aquaponic system: nutrient recycling from fish wastewater by vegetable production. Desalination, 246: 147-156.
  17. Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Tech., 203: 1-22.
  18. Hochmuth G.J., Hanlon E.A. (2010). Commercial vegetable fertilization principles, University of Florida, Soil Water Science Department, Florida Cooperative Extantion Service, SL319, Accessible: http://edis.ifas.ufl.edu/cv009.
  19. Kingler D., Naylor R. (2012). Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annu. Rev. Env. Resour., 37: 247-276.
  20. Lakkireddy K.K.R., Kasturi K., Sambasiva Rao K.R.S. (2012). Role of Hydroponics and Aeroponics in Soilless Culture in Commercial Food Production. Research & Reviews: J. Agric. Sci Technol., 1, 1: 26-35.
  21. Lam S.S., Ma N.L., Jusoh A., Ambak M.A. (2015). Biological nutrient removal by recirculating Aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components. Int. Biodeter. Biodegr., 102: 107-115.
  22. Love D.C., Uhl M.S., Genello L., (2015). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacult. Eng., 68: 19-27.
  23. Malorgio F., Incrocci L., Dimauro B., Pardossi A. (2005). La tecnica della coltivazione fuori suolo. Ministero delle Politiche Agricole e Forestali, Università di Pisa, Regione Siciliana Assessorato Agricoltura e Foreste.
  24. Myers H.M., Tomberlin J.K., Lambert B.D., Kattes D. (2008), Development of Black Soldier Fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 37, 1: 11-15.
  25. Naylor R., Burke M. (2005). Aquaculture and ocean resources: raising tigers oh the sea. Annu. Rev. Env. Resour., 30: 185-218.
  26. Naylor R.L., Goldburg R.J., Primavera J.H., Kautsky N., Beveridge M.C.M. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 24: 1017.
  27. Pantanella E. (2012). Nutrition and quality of Aquaponic systems. Ph.D. dissertation, tutor G. Colla, Università degli studi della Tuscia.
  28. Primavera J.H. (2006. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manage., 49: 531-545.
  29. Putra A.P., Yuliando H. (2015). Soilless Culture System to Support Water Use Efficiency and Product Quality: a Review. Agricult. Agricultural Sci. Proc., 2: 283-288.
  30. Rakocy J.E. (2012). Aquaponics-Integrating Fish and Plant Culture. In: Aquaculture Production Systems, Hoboken, NJ, USA: Tidwell J.H. Ed, John Willey& Sons,
  31. Rakocy J.E., Bailey D.S., Shultz K.A., Cole W.M. (1997). Evaluation of a commercial-scale Aquaponic unit for the production of tilapia and lettuce. 4th Intl. Symp. On Tilapia in Aquaculture, 1: 357-372.
  32. Rakocy J.E, Masser M.P., Losordo T.M. (2006). Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. Southern Regional Aquaculture Center, 454: 1-16.
  33. Rivera-Ferre M., Ortega-Cerdà M., Baumgärtner J., (2013). Rethinking Study and Management of Agricultural Systems for Policy Design. Sustainability, 5: 3858-3875.
  34. Rosenthal H., Castell J.D., Chiba K., Forster J.R.M., Hilge V., Hogendoorn H., Mayo R.D., Muir J.F., Murray K.R., Petit J., Wedemeyer G.A., Wheaton F., Wickins J. (1986). Flow-through and recirculation systems. EIFAC, 100.
  35. Tan C.H., Cheah W.Y., Ling T.C., Show P.L., Juan J.C., Chang J.S. (2015). Algae cultivation in wastewater for biodiesel – A review. Chem. Eng. Trans., 45: 1393-1398. DOI: 10.3303/CET1545233
  36. Tesi R. (2008). Colture protette-Ortoflorovivaismo in ambiente mediterraneo. Milano: Edagricole,
  37. Tidwell J.H., Allan G. (2012). The role of Aquaculture. In: Aquaculture Production Systems. Hoboken, NJ, USA: Tidwell, J.H. Ed, John Wiley & Sons.
  38. Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers P.H., Folke C., Arrow K.J., Barrett S., Crépin A., Ehrlich P.R., Gren A., Kautsky N., Levin S.A., Nyborg K., Österblom H., Polasky S., Scheffer M., Walker B.H., Xepapadeas T., Zeeuw A. (2014). Does aquaculture add resilience to the global food system? PNAS, 111, 37: 13257-13263.
  39. Tyson R.C., Treadwell D.D., Simonne E.H. (2011). Opportunities and Challenges to Sustainability in Aquaponic Systems. Hor. Technol., 21: 6-13.
  40. Velten S., Leventon J., Jager N., Newig J. (2015). What Is Sustainable Agriculture? A Systematic Review. Sustainability, 7: 7833-7865.
  41. Verdegem M.C.J., Bosma R.H., Verreth J.A.J. (2006). Reducing water use for animal production through aquaculture. Water Res. Devel. Man., 22: 101-113.
  42. Veronesi D., Idà A., D’Imporzano G., Adani F. (2015). Microalgae Cultivation: Nutrient Recovery from Digestate for Producing Algae Biomass. Chem. Eng. Trans., 43: 1201-1206. DOI: 10.3303/CET1543201

  • Preliminary study on eel breeding and vegetables production in an aquaponic system B. Fronte, L. Incrocci, G. Galliano, G. Carmassi, A. Pardossi, C. Bibbiani, in Acta Horticulturae /2021 pp.415
    DOI: 10.17660/ActaHortic.2021.1305.54
  • Sustainability of the rice-crayfish co-culture aquaculture model: microbiome profiles based on multi-kingdom analyses Xue Zhu, Lei Ji, Mingyue Cheng, Huimin Wei, Zhi Wang, Kang Ning, in Environmental Microbiome 27/2022
    DOI: 10.1186/s40793-022-00422-4

Carlo Bibbiani, Alessandro Campiotti, Luca Incrocci, Alberto Pardossi, Baldassarre Fronte, Corinna Viola, Aquaponic as sustainable innovation for food production in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 2/2016, pp 249-258, DOI: 10.3280/RISS2016-002022