Choice experiments and environmental taxation: An application to the Italian hydropower sector

Titolo Rivista ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Autori/Curatori Federico Pontoni, Daniel Vecchiato, Francesco Marangon, Tiziano Tempesta, Stefania Troiano
Anno di pubblicazione 2017 Fascicolo 2016/3
Lingua Inglese Numero pagine 20 P. 99-118 Dimensione file 290 KB
DOI 10.3280/EFE2016-003009
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This paper represents the first attempt to simulate the introduction of an incentive-based environmental tax to the hydropower sector. As hydropower can negatively affect fluvial ecosystems, the paper shows how to design and determine per unit tax values for a taxation system that would then be able to provide producers with incentives to opt for more environmentally friendly solutions. The simulation is carried out in the Province of Sondrio (home to 20% of the Italian hydropower production). First, the paper determines the monetary value of the fluvial ecosystem by means of a Discrete Choice Experiment (DCE); then, it compares the models estimated in WTP and preference spaces in order to opt for the most effective punctual values to be used as inputs in a newly designed incentive-based environmental tax; finally, it simulates the effects of the introduction of such a tax to a real case. According to our results, the magnitude of the environmental tax is such that it would certainly stimulate environmentally friendly production, without hindering operators’ profitability.

Keywords:Hydropower, choice experiment, renewables, environmental tax, green energy, ecosystem services

Jel codes:H23, Q25, Q26, Q38, Q51

  1. Klinglmair A., Bliem M.G. and Brouwer R. (2015). Exploring the public value of increased hydropower use: a choice experiment study for Austria. Journal of Environmental Economics and Policy, 4(3): 315-336. DOI: 10.1080/21606544.2015.1018956
  2. ISTAT (2015). Regional data. -- http://www.istat.it/it/lombardia (accessed 18.02.2016).
  3. Lancsar E. and Louviere J. (2008). Estimating individual level discrete choice models and welfare measures using best-worst choice experiments and sequential best-worst MNL. University of Technology, Centre for the Study of Choice (Censoc), 08-004.
  4. Li X.J., Zhang J. and Xu L.Y. (2015). An evaluation of ecological losses from hydropower development in Tibet. Ecological Engeneering, 76: 178-185.
  5. Massarutto A. and Pontoni F. (2015). Rent seizing and environmental concerns: a parametric valuation of the Italian hydropower sector. Energy Policy, 78: 31-40.
  6. McFadden D. (1974). Conditional logit analysis of qualitative choice behaviour. In: Zarembka P. (ed.). Frontiers in econometrics. New York: AcademicPress, 105-142.
  7. Meijer E. and Rouwendal J. (2006). Measuring welfare effects in models with random coefficients. Journal of Applied Economics, 21(2): 227-244.
  8. Nilsson C. (1996). Remediating river margin vegetation along fragmented and regulated rivers in the north: what is possible? Regulated Rivers Research & Management, 12: 415-431.
  9. OECD (2014). The Political Economy of Environmentally Related Taxes. Paris.
  10. Pontoni F., De Carli A., Goltara A. and Massarutto A. (2014). Hydropower production and environmental regulation: opting for a performance-based tax approach. Economics and Policy of Energy and the Environment, 2: 137-152. DOI: 10.3280/EFE2014-002007
  11. Renofalt B.M., Jansson R. and Nilsson C. (2010). Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshwater Biology, 55 (1): 49-67.
  12. Scarpa R., Thiene M. and Train K. (2008). Utility in willingness to pay space: a tool to address confounding random scale effects in destination choice to the Alps. American Journal of Agricultural Economics, 90(4): 994-1010.
  13. Sonnier G., Ainslie A. and Otter T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3): 313-3.
  14. Sundqvist T. (2002). Quantifying Household Preferences over the Environmental Impacts of Hydropower in Sweden: A Choice Experiment Approach. Power Generation Choice in the Presence of Environmental Externalities, Doctoral Thesis, Lulea University of Technology.
  15. TEEB (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB.
  16. Tabi A. and Wüstenhagen R. (2017). Keep it Local and Fish-Friendly: Social acceptance of hydropower projects in Switzerland. Renewable and Sustainable Energy Reviews, 68: 763-773.
  17. Tempesta T. and Vecchiato D. (2013). Riverscape and Groundwater Preservation: A Choice Experiment. Environmental Management, 52(6): 1487-1502.
  18. Train K. (2009). Discrete choice methods with simulation, 2nd ed. Cambridge University Press, New York.
  19. Train K. and Weeks M. (2005). Discrete Choice Models in Preference Space and Willingness-to-Pay Space. In Scarpa R. and Alberini A. (eds.). Applications of Simulation Methods in Environmental and Resource Economics. Springer Netherlands, 6: 1-16.
  20. Vega D.C. and Alpízar F. (2011). Choice experiments in environmental impact assessment: the case of the Toro 3 hydroelectric project and the Recreo Verde tourist center in Costa Rica. Impact Assessment and Project Appraisal, 29(4): 252-262. DOI: 10.3152/146155111X12959673795804
  21. Yu B., Xu L. and Wang X. (2016). Ecological compensation for hydropower resettlement in a reservoir wetland based on welfare change in Tibet, China, Ecological Engeneering, 96: 128-136.
  22. AEEG (2013). Annual Report. --www.autorita.energia.it/it/inglese/annual_report/relaz_annuale.htm (accessed 10.05.2016).
  23. Bateman I.J., Carson R., Day B., Hanemann M., Hanley N., Hett T., Jone-Lee M., Loomes G., Mourato S., Ozdemiroglu E., Pearce D., Sugden R. and Swanson J. (2002). Economic Valuation with Stated Preference Techniques: A Manual. Cheltenham: Edward Elgar Publishing.
  24. Bateman I.J., Mace G.M., Fezzi C., Atkinson G. and Turner R.K. (2011). Economic analysis for ecosystem service assessments. Environmental and Resource Economics, 48(2): 177-218.
  25. Baumol W.J. and Oates W.E. (1988). The theory of environmental policy. Cambridge: Cambridge University Press.
  26. Brown L.E., Hannah D.M. and Milner A.M. (2007). Vulnerability of alpine stream biodiversity to shrinking glaciers and snow-packs. Global Change Biology, 13: 958-966.
  27. Céréghino R., Cugny P. and Lavandier P. (2002). Influence of intermittent hydro-peaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. International Review of Hydrobiology, 87: 47-60.
  28. De Carli A. (ed.) (2014). IDEA – Idroelettrico: Economia e Ambiente. Rapporto per la Provincia di Sondrio.
  29. Ekins P. (1999). European environmental taxes and charges: recent experience, issues and trends. Ecological Economics, 31: 39-62. DOI: 10.1016/S0921-8009(99)00051-8
  30. Fiebig D.G., Keane M.P., Louviere J. and Wasi N. (2009). The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity. Marketing Science, 29(3), 393-421.
  31. Gu Y., Hole A.R. and Knox S. (2013). Fitting the generalized multinomial logit model Stata. Stata Journal, 13(2): 382-397.
  32. Han S.Y., Kwak S.J. and Yoo S.H. (2008). Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environmental Impact Assessment Review, 28(4): 256-266.
  33. Hole A.R. and Kolstad J.R. (2012). Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment. Empirical Economics, 42(2): 445-469.
  34. Hoyos D. (2010). The state of the art of environmental valuation with discrete choice experiments. Ecological Economics, 69: 1595-1603.
  35. Kataria M. (2009). Willingness to pay for environmental improvements in hydropower regulated rivers. Energy Economics, 31: 69-76.
  36. Kataria M., Bateman I., Christensen T., Dubgaard A., Hasler B., Hime S., Ladenburg J., Levin G., Martinsen L. and Nissen C. (2012). Scenario realism and welfare estimate in choice experiments – a non-market valuation study on the European Water Framework Directive. Journal of Environmental Management, 94: 25-33.

  • Water Law, Policy and Economics in Italy Giulia Vaglietti, Federico Pontoni, Alessandro de Carli, Antonio Massarutto, pp.57 (ISBN:978-3-030-69074-8)

Federico Pontoni, Daniel Vecchiato, Francesco Marangon, Tiziano Tempesta, Stefania Troiano, Choice experiments and environmental taxation: An application to the Italian hydropower sector in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 3/2016, pp 99-118, DOI: 10.3280/EFE2016-003009