The 1815 eruption of Tambora volcano: climatic, environmental and human consequences.

Journal title IL RISORGIMENTO
Author/s Clive Oppenheimer
Publishing Year 2017 Issue 2016/2
Language Italian Pages 47 P. 7-53 File size 746 KB
DOI 10.3280/RISO2016-002001
DOI is like a bar code for intellectual property: to have more infomation click here

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The 1815 eruption of Tambora volcano (Sumbawa island, Indonesia) expelled around 140 gt of magma (equivalent to ≈50 km3 of dense rock), making it the largest known historic eruption. More than 95% by mass of the ejecta was erupted as pyroclastic flows, but 40% by mass of the material in these flows ended up as ash fallout from the "Phoenix" clouds that lofted above the flows during their emplacement. Although they made only a minor contribution to the total magnitude of the eruption, the short-lived plinian explosions that preceded the climactic eruption and caldera collapse were powerful, propelling plumes up to 43 km altitude. Over 61.000 people died during, or in the aftermath of, the eruption, on Sumbawa and the neighbouring island of Lombok. The eruption injected ≈60 m of sulfur into the stratosphere, six times more than was released by the 1991 Pinatubo eruption. This formed a global sulfate aerosol veil in the stratosphere, which resulted in pronounced climate perturbations. Anomalously cold weather hit the northeastern Usa, maritime provinces of Canada, and Europe the following year. 1816 came to be known as the "Year without a summer" in these regions. Crop failures were widespread and the eruption has been implicated in accelerated emigration from New England, and widespread outbreaks of epidemic typhus. These events provide important insights into the volcanic forcing of climate, and the global risk of future eruptions on this scale.

L’eruzione nel 1815 del vulcano Tambora, in Indonesia, che espulse 140 gt di magma (≈50 km3 di roccia densa equivalente, DRE), fu la più grande eruzione della storia. Più del 95% delle emissioni consistette in flussi piroclastici, ma il 40% della massa del materiale di questi ultimi risultò essere una caduta di ceneri dalle nubi di tipo Phoenix sprigionatesi dai flussi mentre si depositavano, che contribuirono solo in misura ridotta alla magnitudo totale dell’eruzione. Tuttavia, le brevi esplosioni pliniane che precedettero l’eruzione critica e il collasso della caldera furono potenti, e spinsero le colonne fino a 43 km di altitudine. Più di 61.000 persone morirono durante o immediatamente dopo l’eruzione, a Sumbawa e nella vicina isola di Lombok. L’eruzione emise ≈60 m di zolfo nella stratosfera, una quantità sei volte superiore a quella rilasciata dall’eruzione del Pinatubo nel 1991. Ciò diede luogo a un velo di aerosol di solfati nella stratosfera, che si tradusse in significative perturbazioni del clima. L’anno seguente, un freddo anomalo colpì le regioni nordorientali degli Usa, quelle canadesi che si affacciano sull’Atlantico e l’Europa. Da allora il 1816, in queste zone, è noto come "l’anno senza estate". I raccolti fallirono quasi ovunque e si è chiamata in causa l’eruzione per spiegare l’accelerazione dell’emigrazione dal New England e il diffuso insorgere di epidemie di tifo. Questi fenomeni forniscono elementi di conoscenza fondamentali circa le trasformazioni climatiche indotte dall’attività vulcanica e il rischio globale connesso a eruzioni vulcaniche di queste dimensioni.

Keywords: Atmosphere, climate, Tambora 1815, volcano, "Year wi-thout a summer"

  1. Adams N.K., de Silva S.L., Self S., Salas G., Schubring S., Permenter J.L., Arbesman K. (2001), The Physical Volcanology of the 1600 Eruption of Huaynaputina, Southern Peru, in “Bulletin of Volcanology”, vol. 62, n. 8, pp. 493-518.
  2. Baron W.R. (1992), 1816 in Perspective: the View from the Northeastern Usa, in Harington C.R. (a cura di), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Nature, pp. 124-144.
  3. Briffa K.R., Jones P.D. (1992), The Climate of Europe during the 1810s with Special Reference to 1816, in Harington C.R. (a cura di), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Nature, pp. 372-391.
  4. Briffa K.R., Jones, P.D., Schweingruber F.H., Osborn T.J. (1998), Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the past 600 Years, in “Nature”, vol. 393, n. 6684, pp. 450-455. DOI: 10.1038/3094
  5. Chenoweth M. (2001), Two Major Volcanic Cooling Episodes Derived from Global Marine Air Temperature, AD 1807-1827, in “Geophysical Research Letters”, vol. 28, n. 15, pp. 2963-2966. DOI: 10.1029/2000GL01264
  6. Clausen H.B., Hammer C.U. (1988), The Laki and Tambora Eruptions as Revealed in Greenland Ice Cores from 11 Locations, in “Annals of Glaciology”, vol. 10, pp. 16-22.
  7. Clausewitz C. von (1922), Politische Schriften und Briefe, a cura di Hans Rothfels, Munich, Drei Masken.
  8. Crowley T.J. (2000), Causes of Climate Change over the past 1000 Years, in “Science”, vol. 289, n. 5477, pp. 270-277.
  9. Dai J., Mosley-Thompson E., Thompson L.G. (1991), Ice Core Evidence for an Explosive Tropical Volcanic Eruption 6 Years Preceding Tambora, in “Journal of Geophysical Research: Atmospheres”, vol. 96, n. D9, pp. 17361-17366. DOI: 10.1029/91JD0163
  10. Dawson A.G., Hickey K., McKenna J., Foster I.D.L. (1997), A 200-Year Record of Gale Frequency, Edinburgh, Scotland: Possible Link with High-Magnitude Volcanic Eruptions, in “The Holocene”, vol. 7, n. 3, pp. 337-341. DOI: 10.1177/09596836970070031
  11. Decker R.W. (1990), How Often Does a Minoan Eruption Occur?, in Hardy D.A., Keller J., Galanpoulos V.P., Flemming N.C., Druitt T.H. (a cura di), Thera and the Aegean World III. Volume 2 (Earth Sciences), London, The Thera Foundation, pp. 444-454.
  12. Delmas R.J., Kirchner S., Palais J.M., Petit J.R. (1992), 1000 Years of Explosive Volcanism Recorded at the South Pole, in “Tellus”, vol. 44B, n. 4, pp. 335-350.
  13. De Silva S.L., Zielinski G.A. (1998), Global Influence of the AD 1600 Eruption of Huaynaputina, Peru, in “Nature”, vol. 393, n. 6684, pp. 455-458. DOI: 10.1038/3094
  14. Devine J.D., Sigurdsson H., Davis A.N., Self S. (1984), Estimates of Sulfur and Chlorine Yield to the Atmosphere from Volcanic Eruptions and Potential Climatic Effects, in “Journal of Geophysical Research: Solid Earth”, vol. 89, n. B7, pp. 6309-6325.
  15. Fries A.L. (a cura di) (1947), Records of the Moravians in North Carolina 1752-1879, Raleigh, NC, State Department of Ar-chives and History, vol. VII, pp. 294-313.
  16. Hansen J. et al. (1997) Forcings and Chaos in Interannual to Decadal Climate Change, in “Journal of Geophysical Research: Atmospheres”, vol. 102, n. D22, pp. 25679-25720. DOI: 10.1029/97JD0149
  17. Harington C.R. (a cura di) (1992), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Na-ture.
  18. Holasek R.E., Self S., Woods A.W. (1996), Satellite Observations and Interpretation of the 1991 Mount Pinatubo Eruption Plumes, in “Journal of Geophysical Research: Solid Earth”, vol. 101, n. B12, pp. 27635-27655. DOI: 10.1029/96JB0117
  19. Horn S., Schmincke H.-U. (2000), Volatile Emission during the Eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD, in “Bulletin of Volcanology”, vol. 61, n. 8, pp. 537-555.
  20. Kirchner I., Stenchikov G.L., Graf H.F., Robock A., Antuna J.C. (1999), Climate Model Simulation of Winter Warming and Summer Cooling Following the 1991 Mount Pinatubo Vol-canic Eruption, in “Journal of Geophysical Research: At-mospheres”, vol. 104, n. D16, pp. 19039-19055. DOI: 10.1029/1999JD90021
  21. Laj P., Palais J.M., Gardner J.E., Sigurdsson H. (1993), Modified HNO3 Seasonality in Volcanic Layers of a Polar Ice Core: Snow-Pack Effect or Photochemical Perturbation?, in “Journal of Atmospheric Chemistry”, vol. 16, n. 3, pp. 219-230. DOI: 10.1007/BF0069689
  22. Lamb H.H. (1995), Climate, History and the Modern World, London, Routledge [2a edizione].
  23. Langway C.C., Jr., Clausen H.B., Hammer C.U. (1988), An Inter-Hemispheric Time-Marker in Ice Cores from Greenland and Antarctica, in “Annals of Glaciology”, vol. 10, pp. 102-108.
  24. Legrand M., Delmas R.J. (1987), A 220-Year Continuous Record of Volcanic H2SO4 in the Antarctic Ice Sheet, in “Nature”, vol. 327, n. 6124, pp. 671-676.
  25. Lough J.M. (1992), Climate of 1816 and 1811-20 as Reconstructed from Western North American Tree-Ring Chronologies, in Harington C.R. (a cura di), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Nature, pp. 97-114.
  26. McCormick M.P., Thomason L.W., Trepte C.R. (1995), Atmos-pheric Effects of the Mt. Pinatubo Eruption, in “Nature”, vol. 373, pp. 399-404.
  27. Monzier M., Robin, C., Eissen J.-P. (1994), Kuwae (≈1425 A.D.): the Forgotten Caldera, in “Journal of Volcanology and Geothermal Research”, vol. 59, n. 3, pp. 207-218. DOI: 10.1016/0377-0273(94)90091-
  28. Pant G.B., Parthasarathy B., Sontakke N.A. (1992), Climate over India during the First Quarter of the Nineteenth Century, in Harington C.R. (a cura di), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Nature, pp. 429-435.
  29. Petroeschevsky W.A. (1949), A Contribution to the Knowledge of the Gunung Tambora (Sumbawa), in “Tijdschrift van het K. Nederlandsch Aardrijkskundig Genootschap”, Amsterdam Series 2, vol. 66, pp. 688-703.
  30. Pollitzer R. (1959), Cholera, Geneva, World Health Organization.
  31. Post J.D. (1977), The Last Great Subsistence Crisis in the Western World, Baltimore, MD, The Johns Hopkins University Press.
  32. Pyle D.M. (1995), Mass and Energy Budgets of Explosive Volcanic Eruptions, in “Geophysical Research Letters”, vol. 22, n. 5, pp. 563-566. DOI: 10.1029/95GL0005
  33. Pyle D.M. (2000), Sizes of Volcanic Eruptions, in Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (a cura di), Encyclopedia of Volcanoes, San Diego, Academic Press, pp. 257-264.
  34. Read W.G., Froidevaux L., Waters J.W. (1993), Microwave Limb Sounder Measurements of Stratospheric SO2 from the Mt. Pinatubo Eruption, in “Geophysical Research Letters”, vol. 20, n. 12, pp. 1299-1302. DOI: 10.1029/93GL0083
  35. Robock A. (2000), Volcanic Eruptions and Climate, in “Reviews of Geophysics”, vol. 38, n. 2, pp. 191-219. DOI: 10.1029/1998RG00005
  36. Scaillet B., Clemente B., Evans B.W., Pichavant M. (1998), Redox Control of Sulfur Degassing in Silicic Magmas, in “Journal of Geophysical Research: Solid Earth”, vol. 103, n. B10, pp. 23937-23949. DOI: 10.1029/98JB0230
  37. Self S., Rampino M.R., Newton M.S., Wolff J.A. (1984), Volcano-logical Study of the Great Tambora Eruption of 1815, in “Geology”, vol. 12, n. 11, pp. 659-663.
  38. Sigurdsson H., Carey S. (1989), Plinian and Co-Ignimbrite Tephra Fall from the 1815 Eruption of Tambora Volcano, in “Bulletin of Volcanology”, vol. 51, n. 4, pp. 243-270. DOI: 10.1007/BF0107351
  39. Idd. (1992), The Eruption of Tambora Volcano in 1815: Environ-mental Effects and Eruption Dynamics, in Harington C.R. (a cura di), The Year without a Summer? World Climate in 1816, Ottawa, Canadian Museum of Nature, pp. 16-45.
  40. Simkin T., Siebert L. (1994), Volcanoes of the World, Tucson, AZ, Geoscience Press-Washington, DC, Smithsonian Institution.
  41. Stommel H., Stommel E. (1979), The Year without a Summer, in “Scientific American”, vol. 240, n. 5, pp. 176-186.
  42. Id. (1983), Volcano Weather: the Story of 1816, the Year without a Summer, Newport, RI, Seven Seas Press.
  43. Stothers R.B. (1984), The Great Tambora Eruption in 1815 and Its Aftermath, in “Science”, vol. 224, n. 4654, pp. 1191-1198.
  44. Surmieda M.R. et al. (1992), Surveillance in Evacuation Camps after the Eruption of Mt. Pinatubo, Philippines, in CDC Surveillance Summaries, CDC Morbidity and Mortality Weekly Report 41 (SS-4), pp. 9-12.
  45. Tanguy J.C., Ribiere C., Scarth A., Tjetjep W.S. (1998), Victims from Volcanic Eruptions: a Revised Database, in “Bulletin of Volcanology”, vol. 60, n. 2, pp. 137-144.
  46. Vupputuri R.K.R. (1992), The Tambora Eruption in 1815 Pro-vides a Test on Possible Global Climatic and Chemical Perturbations in the Past, in “Natural Hazards”, vol. 5, n. 1, pp. 1-16.
  47. Woods A.W., Wohletz K.H. (1991), Dimensions and Dynamics of Co-Ignimbrite Eruption Columns, in “Nature”, vol. 350, n. 6315, pp. 225-227.
  48. Zielinski G.A. (1995), Stratospheric Loading and Optical Depth Estimates of Explosive Volcanism over the Last 2100 Years Derived from the Greenland Ice Sheet Project 2 Ice Core, in “Journal of Geophysical Research: Atmospheres”, vol. 100, n. D10, pp. 20937-20955. DOI: 10.1029/95JD0175
  49. Zollinger H. (1855), Besteigung des Vulkans Tamboro auf der Insel Sumbawa und Schiderung der Eruption desselben im Jahren 1815, Wintherthur, Zurcher and Fürber-Wurster and Co.

Clive Oppenheimer, L’eruzione del vulcano Tambora nel 1815: le conseguenze sul clima, l’ambiente e l’uomo in "IL RISORGIMENTO" 2/2016, pp 7-53, DOI: 10.3280/RISO2016-002001