Environmental Benefits of Precision Agriculture Adoption

Journal title ECONOMIA AGRO-ALIMENTARE
Author/s Marco Medici, Søren Marcus Pedersen, Giacomo Carli, Maria Rita Tagliaventi
Publishing Year 2020 Issue 2019/3
Language English Pages 20 P. 637-656 File size 147 KB
DOI 10.3280/ECAG2019-003004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The purpose of this study is to analyse the environmental benefits of precision agriculture technology adoption obtained from the mitigation of negative environmental impacts of agricultural inputs in modern farming. Our literature review of the environmental benefits related to the adoption of precision agriculture solutions is aimed at raising farmers’ and other stakeholders’ awareness of the actual environmental impacts from this set of new technologies. Existing studies were categorised according to the environmental impacts of different agricultural activities: nitrogen application, lime application, pesticide application, manure application and herbicide application. Our findings highlighted the effects of the reduction of input application rates and the consequent impacts on climate, soil, water and biodiversity. Policy makers can benefit from the outcomes of this study developing an understanding of the environmental impact of precision agriculture in order to promote and support initiatives aimed at fostering sustainable agriculture.

Keywords: Precision agriculture, variable rate technology, environmental benefits, environmental impact, adoption.

Jel codes: Q1, Q5

  1. Aita, V., Magano, D.A. & Guedes, J.V.C. (2015). Manejo de Lagartas na Cultura da Soja com Aplicação de Controle Localizado, 40, 5.
  2. Ampatzidis, Y., Tan, L., Haley, R. & Whiting, M.D. (2016). Cloud-based harvest management information system for hand-harvested specialty crops. Computers and Electronics in Agriculture, 122, 161-167.
  3. Baggs, E.M., Smales, C.L. & Bateman, E.J. (2010). Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. Biology and Fertility of Soils, 46(8), 793-805.
  4. Bajwa, A.A., Mahajan, G. & Chauhan, B.S. (2015). Nonconventional Weed Management Strategies for Modern Agriculture. Weed Science, 63(4), 723-747. DOI: 10.1614/WS-D-15-00064.1
  5. Baker, N.J., Bancroft, B.A. & Garcia, T.S. (2013). A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians. Science of The Total Environment, 449, 150-156.
  6. Balafoutis, A.T., Koundouras, S., Anastasiou, E., Fountas, S. & Arvanitis, K. (2017). Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study. Sustainability, 9(11), 1997.
  7. Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F. & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. The Science of the Total Environment, 545-546, 227-235.
  8. Bouwman, A.F., Boumans, L.J.M. & Batjes, N.H. (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 6-1-6–13. DOI: 10.1029/2001GB001811
  9. Brown, L., Soltani, N., Shropshire, C., Spieser, H. & Sikkema, P. H. (2007). Efficacy of four corn (Zea mays L.) herbicides when applied with flat fan and air induction nozzles. Weed Biology and Management, 7(1), 55-61.
  10. Carli, G., Canavari, M. & Grandi, A. (2014). Introducing Activity-Based Costing in Farm Management: The Design of the FarmBO System. International Journal of Agricultural and Environmental Information Systems, 5(4), 69-84.
  11. Cassman, K.G., Dobermann, A. & Walters, D.T. (2002). Agroecosystems, Nitrogenuse Efficiency, and Nitrogen Management. AMBIO: A Journal of the Human Environment, 31(2), 132-140. DOI: 10.1579/0044-7447-31.2.132
  12. Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B. & Misselbrook, T. (2011a). Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 166-167, 514-531.
  13. Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B. & Misselbrook, T. (2011b). Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 166-167, 514-531.
  14. Chen, Y., Ozkan, H.E., Zhu, H., Derksen, R.C., Krause, C.R. (2013a). Spray Deposition inside Tree Canopies from a Newly Developed Variable-Rate Air-Assisted Sprayer. Transactions of the ASABE, 1263-1272.
  15. Chen, L., Xing, L. & Han, L. (2013b). Review of the Application of Near-Infrared Spectroscopy Technology to Determine the Chemical Composition of Animal Manure. Journal of Environment Quality, 42(4), 1015.
  16. Chopra, A.K., Sharma, M.K. & Chamoli, S. (2011). Bioaccumulation of organochlorine pesticides in aquatic system – An overview. Environmental Monitoring and Assessment, 173(1-4), 905-916.
  17. Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S. & Thornton, P.E. (2006). DAYCENT National-Scale Simulations of Nitrous Oxide Emissions from Cropped Soils in the United States. Journal of Environment Quality, 35(4), 1451.
  18. Elliott, J.E., Hindmarch, S., Albert, C.A., Emery, J., Mineau, P. & Maisonneuve, F. (2014). Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environmental Monitoring and Assessment, 186(2), 895-906.
  19. Fountas, S., Carli, G., Sorensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … & Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40-50.
  20. Fountas, S., Sorensen, C.G., Tsiropoulos, Z., Cavalaris, C., Liakos, V. & Gemtos, T. (2015). Farm machinery management information system. Computers and Electronics in Agriculture, 110, 131-138.
  21. Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B. & Cosby, B.J. (2003). The Nitrogen Cascade. BioScience, 53(4), 341.
  22. Gebhardt, S. & Kuhbauch, W. (2006, agosto 31). Image classification approach for automatic identification of grassland weeds (W. Gao & S.L. Ustin, a c. di). DOI: 10.1117/12.678752
  23. Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., … & Inchausti, P. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11(2), 97-105.
  24. Gibbons, J.M., Williamson, J.C., Williams, A.P., Withers, P.J.A., Hockley, N., Harris, I.M., … & Healey, J.R. (2014). Sustainable nutrient management at field, farm and regional level: Soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agriculture, Ecosystems & Environment, 188, 48-56.
  25. Gil, E., Escola, A., Rosell, J.R., Planas, S. & Val, L. (2007). Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection, 26(8), 1287-1297.
  26. Good, A.G. & Beatty, P.H. (2011). Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biology, 9(8), e1001124.
  27. Grant, R.F., Pattey, E., Goddard, T.W., Kryzanowski, L.M. & Puurveen, H. (2006). Modeling the Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Science Society of America Journal, 70(1), 235.
  28. Gray, N.D., Hastings, R.C., Sheppard, S.K., Loughnane, P., Lloyd, D., McCarthy, A.J. & Head, I.M. (2003). Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil. FEMS Microbiology Ecology, 46(1), 11-22. DOI: 10.1016/S0168-6496(03)00160-0
  29. Guerrero-Estevez, S.M. & Lopez-Lopez, E. (2016). Effects of endocrine disruptors on reproduction in viviparous teleosts with intraluminal gestation. Reviews in Fish Biology and Fisheries, 26(3), 563-587.
  30. Hayes, A.F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY, US: Guilford Press.
  31. Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S., … Hayes, R.C. (2018). Liming impacts on soils, crops and biodiversity in the UK: A review. Science of The Total Environment, 610-611, 316-332.
  32. Imfeld, G. & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49, 22-30.
  33. Islam, F., Wang, J., Farooq, M.A., Khan, M.S.S., Xu, L., Zhu, J., … Zhou, W. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International, 111, 332-351.
  34. Johnson, D., Leake, J.R. & Read, D.J. (2005). Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonization in upland grassland. Plant and Soil, 271(1-2), 157-164.
  35. Jongbloed, A.W. & Lenis, N.P. (1998). Environmental concerns about animal manure. Journal of Animal Science, 76(10), 2641-2648.
  36. Karkee, M., Steward, B. & Kruckeberg, J. (2013). Automation of Pesticide Application Systems. In F. Pierce (a c. di), Agricultural Automation (pp. 263-293).
  37. Kohler, H.-R. & Triebskorn, R. (2013). Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? Science, 341(6147), 759-765.
  38. Krishna, K.R. (2013). Precision farming: Soil fertility and productivity aspects. Oakville, ON; Waretown, NJ: Apple Academic Press.
  39. Kunhikrishnan, A., Thangarajan, R., Bolan, N. S., Xu, Y., Mandal, S., Gleeson, D. B., … & Naidu, R. (2016). Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. Advances in Agronomy, 139, 1-71.
  40. Laegreid, M. & Aastveit, A.H. (2002). Nitrous oxide emissions from field-applied fertilizers. -- Recuperato da http://inis.iaea.org/Search/search.aspx?orig_q=RN:34032410.
  41. Lajmanovich, R.C., Attademo, A.M., Simoniello, M.F., Poletta, G.L., Junges, C.M., Peltzer, P.M., … & Cabagna-Zenklusen, M.C. (2015). Harmful Effects of the Dermal Intake of Commercial Formulations Containing Chlorpyrifos, 2,4-D, and Glyphosate on the Common Toad Rhinella arenarum (Anura: Bufonidae). Water, Air & Soil Pollution, 226(12).
  42. Ma, B.L., Wu, T.Y., Tremblay, N., Deen, W., Morrison, M.J., Mclaughlin, N.B., … Stewart, G. (2010). Nitrous oxide fluxes from corn fields: On-farm assessment of the amount and timing of nitrogen fertilizer: NITROGEN FERTILIZER IMPACT ON N2O EMISSION. Global Change Biology, 16(1), 156-170.
  43. Main, D.C., Sanderson, K.R., Fillmore, S.A.E. & Ivany, J.A. (2013). Comparison of synthetic and organic herbicides applied banded for weed control in carrots (Daucus carota L.). Canadian Journal of Plant Science, 93(5), 857-861.
  44. Michaud, J.P. & Vargas, G. (2010). Relative toxicity of three wheat herbicides to two species of Coccinellidae. Insect Science.
  45. Mineau, P. (2002). Estimating the probability of bird mortality from pesticide sprays on the basis of the field study record. Environmental Toxicology and Chemistry, 21(7), 1497-1506.
  46. Mohankumar Sajeev, E.P., Winiwarter, W. & Amon, B. (2018). Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. Journal of Environment Quality, 47(1), 30.
  47. Morris, A., Murrell, E.G., Klein, T. & Noden, B.H. (2016). Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting. Ecotoxicology, 25(5), 863-870.
  48. Moshia, M.E., Khosla, R., Davis, J.G., Westfall, D.G. & Doesken, K. (2015). Precision Manure Management on Site-Specific Management Zones: Topsoil Quality and Environmental Impact. Communications in Soil Science and Plant Analysis, 46(2), 235-258. DOI: 10.1080/00103624.2014.967862
  49. Oo, A.Z., Sudo, S., Akiyama, H., Win, K. T., Shibata, A., Yamamoto, A., … & Hirono, Y. (2018). Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil. PLoS ONE, 13(2).
  50. Parkin, T.B. (2008). Effect of Sampling Frequency on Estimates of Cumulative Nitrous Oxide Emissions. Journal of Environment Quality, 37(4), 1390.
  51. Pedersen, S.M., Medici, M., Anken, T., Tohidloo, G., Pedersen, M.F., Carli, G., …& Fountas, S. (2019). Financial and environmental performance of integrated precision farming systems. Precision agriculture ’19, 833-839. DOI: 10.3920/978-90-8686-888-9_103
  52. Phoenix, G.K., Hicks, W.K., Cinderby, S., Kuylenstierna, J.C.I., Stock, W.D., Dentener, F.J., … Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12(3), 470-476.
  53. Pierce, F.J. & Nowak, P. (1999). Aspects of Precision Agriculture. In Advances in Agronomy (Vol. 67, pp. 1-85). DOI: 10.1016/S0065-2113(08)60513-1
  54. Power, E.F., Kelly, D.L. & Stout, J.C. (2013). The impacts of traditional and novel herbicide application methods on target plants, non-target plants and production in intensive grasslands. Weed Research, 53(2), 131-139.
  55. Rashid, B., Husnain, T. & Riazuddin, S. (2010). Herbicides and Pesticides as Potential Pollutants: A Global Problem. In M. Ashraf, M. Ozturk & M.S.A. Ahmad (a c. di), Plant Adaptation and Phytoremediation (pp. 427-447). DOI: 10.1007/978-90-481-9370-7_19
  56. Relyea, R.A. (2005). The Lethal Impact of Roundup on Aquatic and Terrestrial Amphibians. Ecological Applications, 15(4), 1118-1124. DOI: 10.1890/04-1291
  57. Ridley, A.M., White, R.E., Helyar, K.R., Morrison, G.R., Heng, L.K. & Fisher, R. (2001). Nitrate leaching loss under annual and perennial pastures with and without lime on a duplex (texture contrast) soil in humid southeastern Australia. European Journal of Soil Science, 52(2), 237-252.
  58. Rohr, J.R. & McCoy, K.A. (2010). A Qualitative Meta-Analysis Reveals Consistent Effects of Atrazine on Freshwater Fish and Amphibians. Environmental Health Perspectives, 118(1), 20-32.
  59. Rohr, J.R., Schotthoefer, A.M., Raffel, T.R., Carrick, H.J., Halstead, N., Hoverman, J.T., … & Beasley, V.R. (2008). Agrochemicals increase trematode infections in a declining amphibian species. Nature, 455(7217), 1235-1239.
  60. Roper, M.M. (2005). Managing soils to enhance the potential for bioremediation of water repellency. Soil Research, 43(7), 803. DOI: 10.1071/SR05061
  61. S., S., L., A., M., S. & A., R. (2002). Influence of liming, inoculum level and inoculum placement on root colonization of subterranean clover. Mycorrhiza, 12(6), 285-290.
  62. Sapkota, A., Chelikowsky, A.P., Nachman, K.E., Cohen, A.J. & Ritz, B. (2012). Exposure to particulate matter and adverse birth outcomes: A comprehensive review and meta-analysis. Air Quality, Atmosphere & Health, 5(4), 369-381.
  63. Sehy, U., Ruser, R. & Munch, J.C. (2003). Nitrous oxide fluxes from maize fields: Relationship to yield, site-specific fertilization, and soil conditions. Agriculture, Ecosystems & Environment, 99(1-3), 97-111. DOI: 10.1016/S0167-8809(03)00139-7
  64. Shepherd, M. & Newell-Price, P. (2013). Manure management practices applied to a seven-course rotation on a sandy soil: Effects on nitrate leaching. Soil Use and Management, 29(2), 210-219.
  65. Silva, V., Mol, H.G.J., Zomer, P., Tienstra, M., Ritsema, C.J. & Geissen, V. (2019). Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of The Total Environment, 653, 1532-1545.
  66. Slaninova, A., Smutna, M., Modra, H. & Svobodova, Z. (2009). A review: Oxidative stress in fish induced by pesticides. Neuro Endocrinology Letters, 30 Suppl 1, 2-12.
  67. Smith, K.A., Chalmers, A.G., Chambers, B.J. & Christie, P. (1998). Organic manure phosphorus accumulation, mobility and management. Soil Use and Management, 14(s4), 154-159.
  68. Snyder, C.S., Bruulsema, T.W., Jensen, T.L. & Fixen, P.E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3-4), 247-266.
  69. Sorensen, C.G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S.M., … & Blackmore, S.B. (2010). Conceptual model of a future farm management information system. Computers and Electronics in Agriculture, 72(1), 37-47.
  70. Stevens, R.J. & Laughlin, R.J. (1996). Effects of lime and nitrogen fertilizer on two sward types over a 10-year period. The Journal of Agricultural Science, 127(4), 451-461. DOI: 10.1017/S0021859600078679
  71. Tillett, N.D., Hague, T. & Marchant, J.A. (1998). A Robotic System for Plant-Scale Husbandry. Journal of Agricultural Engineering Research, 69(2), 169-178.
  72. Tsaboula, A., Papadakis, E.-N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K. & Papadopoulou-Mourkidou, E. (2016). Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. Environment International, 91, 78-93.
  73. Tubiello, F.N., Salvatore, M., Ferrara, A.F., House, J., Federici, S., Rossi, S., … & Smith, P. (2015). The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012. Global Change Biology, 21(7), 2655-2660.
  74. US EPA National Center for Environmental Assessment, R. T. P. N. & Sacks, J. (s.d.). Integrated Science Assessment (isa) For Particulate Matter (Final Report, Dec 2009) [Reports & Assessments]. -- Recuperato 28 novembre 2019, da https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546.
  75. Van Evert, F.K., Gaitan-Cremaschi, D., Fountas, S. & Kempenaar, C. (2017).
  76. Can Precision Agriculture Increase the Profitability and Sustainability of the Production of Potatoes and Olives? Sustainability, 9(10), 1863.
  77. Williams, M.M. & Mortensen, D.A. (2000). Crop/Weed Outcomes from Site-Specific and Uniform Soil-Applied Herbicide Applications. Precision Agriculture, 2(4), 377-388. DOI: 10.1023/A:1012304116101
  78. Zhalnina, K., de Quadros, P.D., Gano, K.A., Davis-Richardson, A., Fagen, J.R., Brown, C.T., … Triplett, E.W. (2013). Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Frontiers in Microbiology, 4.

  • Analyzing Household Dietary Diversity Amongst Urban Food Insecure Households Adrino Mazenda, Tinashe Mushayanyama, in Journal of Hunger & Environmental Nutrition /2022 pp.630
    DOI: 10.1080/19320248.2021.1906818
  • New Generation Sustainable Technologies for Soilless Vegetable Production Fernando Fuentes-Peñailillo, Karen Gutter, Ricardo Vega, Gilda Carrasco Silva, in Horticulturae /2024 pp.49
    DOI: 10.3390/horticulturae10010049
  • Opportunities and Strategic Use of Agribusiness Information Systems Marco Medici, Maurizio Canavari, pp.174 (ISBN:9781799848493)
  • Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy Stefania Troiano, Matteo Carzedda, Francesco Marangon, in Agricultural and Food Economics 16/2023
    DOI: 10.1186/s40100-023-00247-w
  • Innovation in Basilicata agriculture: From tradition to digital Maria Assunta D’Oronzio, Carmela Sica, in Economia agro-alimentare 2/2021 pp.1
    DOI: 10.3280/ecag2-2021oa12210

Marco Medici, Søren Marcus Pedersen, Giacomo Carli, Maria Rita Tagliaventi, Environmental Benefits of Precision Agriculture Adoption in "ECONOMIA AGRO-ALIMENTARE" 3/2019, pp 637-656, DOI: 10.3280/ECAG2019-003004