Stories and emotions in communication on social issues: an analysis of Italian campaigns about donation in the period 2013-2018

Journal title SOCIOLOGIA DELLA COMUNICAZIONE
Author/s Gea Ducci, Stefania Antonioni
Publishing Year 2020 Issue 2019/58
Language Italian Pages 22 P. 5-26 File size 750 KB
DOI 10.3280/SC2019-058001
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The article’s main goal is to present some considerations on the ways in which PSAs uses contemporary communication strategies, such as narratives and lan-guages evoking different kind of emotions in connected publics, arousing their emotional engagement in a social context characterised by a hybrid and conver-gent media ecosystem. More specifically, we will focus on peculiarity and trends of communication on Italian communication on social issues, introducing a survey measuring and analyzing the campaigns on donation produced by public institu-tions and non profit organizations in the period 2013-2018. The distinctiveness of the Italian case will be outlined also examining some foreign campaigns on dona-tion, arousing great interest in an international panorama.

Keywords: Public Service Announcement, engagement, emotional engagement, storytelling, donation.

  1. Al-Saqaf W., Seidler N. (2017). Blockchain technology for social impact: opportunities and challenges ahead. Journal of Cyber Policy, 2(3): 338-354. DOI: 10.1080/23738871.2017.140008
  2. Anderson C. (2008). The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 23 giugno 2008. -- Testo disponibile al sito: https://www.wired.com/2008/06/pb-theory/ (26/07/2019).
  3. Bellini M. (2019). Blockchain: cos’è, come funziona e gli ambiti applicativi in Italia. Blockchain4Innovation, 18 giugno 2019. -- Testo disponibile al sito: https://www.blockchain4innovation.it/esperti/blockchain-perche-e-cosi-importante/#Smart_Contract_e_blockchain (26/07/2019).
  4. Black N. (2001). Evidence based policy: Proceed with care. British Medical Journal, 323: 275-279.
  5. Blind K. (2018). “Current Challenges for Measuring Innovation, their Implications for Evidence-Based Innovation Policy and the Opportunities of Big Data”, paper presentato alla Conferenza “Impact of R&I Policy at the Crossroads of Policy Design, Implementation, Evaluation”, Vienna, 5 Novembre 2018. -- Testo disponibile al sito: https://www.impactevaluation.eu/wp-content/uploads/2018/11/Blind_etal_Assessing-impacts-1.pdf (26/07/2019).
  6. boyd d., Crawford K. (2011). “Six Provocations for Big Data”, presentato all’Oxford Internet Institute, A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, 21 Settembre. -- Testo disponibile al sito: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1926431 (26/07/2019).
  7. Brooks D. (2013). What data can’t do. New York Times, 18 February 2013. -- Testo disponibile al sito: https://www.nytimes.com/2013/02/19/opinion/brooks-what-data-cant-do.html (14/07/2019).
  8. Burrows R., Savage M. (2014). After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data & Society, 1(1): 1-6. DOI: 10.1177/205395171454028
  9. Chetty R., Hendren N., Kline P., Saez E. (2015). Economic mobility. Pathways, Special Issue 2015 – State of the States: The Poverty and Inequality Report, pp. 55-60.
  10. Crompton R. (2008). 40 years of sociology: Some comments. Sociology, 42(6): 1218-1227. DOI: 10.1177/003803850809694
  11. Desouza K.C., Smith K.L. (2014). Big Data for Social Innovation. Stanford Social Innovation Review, Summer 2014: 39-43.
  12. DiMaggio P. (2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, July-December: 1-5. DOI: 10.1177/205395171560290
  13. Frade C. (2016). Social theory and the politics of big data and method. Sociology, 50(5): 863-877. DOI: 10.1177/003803851561418
  14. Galen D.J., Brand N., Boucherle L., Davis R., Do N., El-Baz B., Kimura I., Wharton K., Lee J. (2018). Blockchain for Social Impact: Moving Beyond the Hype. Stanford: Stanford Graduate School of Businness, Center for Social innovation, RippleWorks.
  15. Gandomi A., Haider M. (2015). Beyond the hype: Big data concepts, methods and analytics. International Journal of Information Management, 35: 137-144.
  16. gartner.com (2013). Big data. -- Testo disponibile al sito: https://www.gartner.com/it-glossary/big-data/ (11 /07/2019).
  17. Goldthorpe J. (2016). Sociology as a Population Science. Cambridge: Cambridge University Press.
  18. Halford S., Pope C., Weal M. (2013). Digital futures? Sociological challenges and opportunities in the emergent semantic web. Sociology, 47(1): 173-189. DOI: 10.1177/003803851245379
  19. Halford S., Savage M. (2017). Speaking Sociologically with Big Data: Symphonic Social Science and the Future for Big Data Research. Sociology, 51(6): 1132-1148. DOI: 10.1177/003803851769863
  20. Hey T., Tansley S., Tolle K. (2009). Jim Grey on eScience: A transformed scientific method. In: Hey T., Tansley S., Tolle K., editors, The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research.
  21. Ito J., Narula N., Ali R. (2017). The Blockchain Will Do to the Financial System What the Internet Did to Media. Harvard Business Review, 8 marzo 2017. -- Testo disponibile al sito: https://hbr.org/2017/03/the-blockchain-will-do-to-banks-and-law-firms-what-the-internet-did-to-media (26/07/2019).
  22. Katz J.E. (2008). Handbook of mobile communication studies. London: The MIT Press.
  23. Kelling S., Hochachka W., Fink D., Riedewald M., Caruana R., Ballard G., Hooker G. (2009). Data-intensive Science: A new paradigm for biodiversity studies. BioScience, 59(7): 613-620.
  24. Kitchin R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, April-June 2014: 1-12. DOI: 10.1177/205395171452848
  25. Laidin L., Papadopoulou K.A., Dane N.A. (2019). Parameters for Building Sustainable Blockchain Application Initiatives. The JBBA, 2(1): 1-6.
  26. Lombi L. (2015). La ricerca sociale al tempo dei big data: sfide e prospettive. Studi di Sociologia, 2: 215-227. DOI: 10.1400/23381
  27. Luhmann N. (1990). Sistemi sociali. Bologna: il Mulino.
  28. Mandiberg M. (2012). The social media reader. New York: NYU Press, New York University.
  29. Manovich L. (2012). Trending: The promises and the challenges of big social data. In: Gold M.K., Debates in the Digital Humanities. Minneapolis, MN: University of Minnesota Press.
  30. Marres N., Gerlitz C. (2016). Interface methods: Renegotiating the relations between digital social research, STS and the sociology of innovation. Sociological Review, 64: 21-46. DOI: 10.1111/1467-954X.1231
  31. Mattila J. (2016). “The Blockchain Phenomenon – The Disruptive Potential of Distributed Consensus Architectures”, ETLA Working Papers No 38. Testo disponibile al sito: http://pub.etla.fi/ETLA-Working-Papers-38.pdf (25/07/2019).
  32. Maturo A., Moretti V. (2019). Digital Health and the Gamification of Life. New York: Emerald.
  33. Montero A.L. (2015). Evidence in public social services: and overview from practice and applied research. Bruxelles: The European Social Network.
  34. Olshannikova E., Olsson T., Huhtamäki J., Kärkkäinen H. (2017). Conceptualizing Big Social Data. Journal of Big Data, 4(3): 1-19.
  35. Parkhurst J. (2017). The Politics of Evidence. From evidence-based policy to the good governance of evidence. London – New York City: Routledge.
  36. Porway J. (2015). Five principles for applying data science for social good. O’Reilly, 1° ottobre 2015. Testo disponibile al sito: https://www.oreilly.com/ideas/five-principles-for-applying-data-science-for-social-good (14/07/2019).
  37. Rogers R. (2013). Digital Methods. Cambridge, MA: The MIT Press.
  38. Savage M., Burrows R. (2007). The coming crisis of empirical sociology. Sociology, 41(5): 885-899. DOI: 10.1177/003803850708044
  39. Spaggiari O. (2013). Big Data: i numeri che ci migliorano la vita. Vita, 22 novembre 2013. -- Testo disponibile al sito: http://www.vita.it/it/article/2013/11/22/big-data-i-numeri-che-ci-migliorano-la-vita/125360/ (26/07/2019).
  40. Tinati R., Halford S., Carr L., Pope C. (2014). Big Data: Methodological Challenges and Approaches for Sociological Analysis. Sociology, 48(4): 663-681. DOI: 10.1177/003803851351156
  41. Wesselink A., Colebatch H., Pearce W. (2014). Evidence and policies: discourses, meanings and practices. Policy Sciences, 47(4): 339-344.
  42. Zumbrun J. (2014). SAT Scores and Income Inequality: How Wealthier Kids Rank Higher. The Wall Street Journal, 7 Ottobre 2014. -- Testo disponibile al sito: https://blogs.wsj.com/economics/2014/10/07/sat-scores-and-income-inequality-how-wealthier-kids-rank-higher/ (28/07/2019).

Gea Ducci, Stefania Antonioni, Storie ed emozioni nella comunicazione sociale: un’analisi delle campagne sulla donazione in Italia nel periodo 2013-2018 in "SOCIOLOGIA DELLA COMUNICAZIONE " 58/2019, pp 5-26, DOI: 10.3280/SC2019-058001