Algorithmic profiling and neogeneralism: The paradox of media personalisation in the age of streaming platforms

Journal title SOCIOLOGIA DELLA COMUNICAZIONE
Author/s Guglielmo Pescatore
Publishing Year 2024 Issue 2023/66
Language Italian Pages 21 P. 21-41 File size 338 KB
DOI 10.3280/SC2023-066002
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This article examines the phenomenon of “neogeneralism” in the context of streaming platforms such as Netflix, Amazon Prime Video and Disney+. At a time when media personalisation has long been seen as the future of media consumption, neogeneralism emerges as a paradigm that paradoxically combines personalisation with a generalist approach. Using sophisticated recommendation algorithms, streaming platforms are able to offer a “one channel for all” experience, providing tailor-made content that satisfies a wide range of tastes and preferences. The article focuses on the crucial role of recommendation systems in this new landscape, exploring how they not only curate a “universal library” of content, but also how they align with platforms’ monetisation strategies. Through the analysis of the Netflix case, the article aims to provide a more nuanced understanding of contemporary media processes and their implications for both consumers and industry.

Keywords: television; streaming platforms; Netflix; recommender system; audiences; personalization

  1. Amatriain X., Basilico J. (2015), Recommender Systems in Industry: A Netflix Case Study, in Ricci F., Rokach L., Shapira B., Recommender Systems Handbook, Springer, New York.
  2. Avezzù G. (2017), The Data Don’t Speak for Themselves: The Humanity of VOD Recommender Systems, in «Cinéma & Cie», 17(29): 51-66.
  3. Brembilla P., Pescatore G. (2014), La serialità televisiva americana: produzione, consumo e tipologie di prodotto, in Carluccio G., America oggi. Cinema, media, narrazioni del nuovo millennio, Kaplan, Torino.
  4. Brembilla P. (2018), Dalla TV alle OTT: il caso Netflix, in M. Scaglioni, A. Sfardini (a cura di), La televisione. Modelli teorici e percorsi d’analisi, Carocci, Roma.
  5. Crisp V. (2015), Film Distribution in the Digital Age. Pirates and Professionals, Palgrave Macmillan, London.
  6. Coviello M., Re V. (2020), “Continua a guardare”. Strategie enunciative nelle piattaforme di video on demand, in «E/C», n. 20.
  7. Coviello M., De Rosa P., Re V., Spalletta M. (2021), Scelgo dunque sono? L’esperienza Netflix nel racconto degli utenti, in «Imago», n. 23.
  8. Degli Esposti M., Pescatore G. (2023), Exploring TV Seriality and Television Studies through Data-Driven Approaches, in Avezzù G., Rocchi M. (eds.), Audiovisual Data: Data-Driven Perspectives for Media Studies. 13th Media Mutations International Conference, Media Mutations Publishing, Bologna
  9. Fisher E., Mehozay Y. (2019), How algorithms see their audience: media epistemes and the changing conception of the individual, in «Media, Culture & Society», 41(8), 1176-1191 https://doi-org.ezproxy.unibo.it/10.1177/0163443719831598.
  10. Frey M. (2021), Netflix Recommends Algorithms, Film Choice, and the History of Taste, University of California Press, Oakland.
  11. Gomez-Uribe C., Hunt N. (2015), The Netflix Recommender System, in «ACM Transactions on Management Information Systems (TMIS)», 6 DOI: 10.1145/2843948
  12. Johnson C. (2019), Online TV, Routledge, London.
  13. Jenkins H. (2006), Convergence Culture: Where Old and New Media Collide, New York University Press, New York; trad. it. (2007), Cultura convergente: dove i vecchi e i nuovi media si scontrano, Apogeo, Milano.
  14. Jenkins H., Ford S., Green J. (2013), Spreadable Media, New York University Press, New York.
  15. Jenner, M. (2018), Netflix and the Re-invention of Television, Palgrave Macmillan, Cham.
  16. Khoo O. (2022), Picturing Diversity: Netflix’s Inclusion Strategy and the Netflix Recommender Algorithm (NRA), in «Television & New Media», 24. DOI: 10.1177/15274764221102864
  17. Lessig L. (2004), Free Culture: How Big Media Uses Technology and the Law to Lock Down Culture and Control Creativity. Penguin Press, New York; trad. it. (2005), Cultura libera: un equilibrio fra anarchia e controllo, fra pirateria e proprietà, Feltrinelli, Milano.
  18. Lessig L. (2008), Remix, Bloomsbury, London; tr.it. (2009), Remix, Etas, Milano.
  19. Lobato R. (2012), Shadow Economies of Cinema, BFI-Palgrave, London.
  20. Lobato R. (2019), Netflix Nations. The Geography of Digital Distribution, NYU Press, New York; trad. it. (2020), Netflix nations: geografia della distribuzione digitale, minimum fax, Roma.
  21. Lotz A. (2014), The television will be revolutionized, Second edition, NYU Press, New York; trad. it. (2017), Post Network: la rivoluzione della tv, minimum fax, Roma.
  22. Lotz A. (2022), Netflix and streaming video, Polity Press, Cambridge.
  23. Lotz A., Lobato R. (2023), Streaming Video. Storytelling Across Borders, NYU Press, New York.
  24. Lüders M., Sundet V.S. (2021), Conceptualizing the Experiential Affordances of Watching Online TV, in «Television & New Media», 23(4). DOI: 10.1177/152747642110109
  25. McDonald K., Smith-Rowsey D. (eds.) (2016), The Netflix Effect. Technology and Entertainment in the 21st Century, Bloomsbury Publishing, London.
  26. Media Play News. (2023), Number of Disney Plus subscribers worldwide from 1st quarter 2020 to 3rd quarter 2023 (in millions), Statista. Statista Inc. https://www.statista.com/statistics/1095372/disney-plus-number-of-subscribers-us.
  27. Menezes R., Jha R., Yeh G., Lamkhede S. (2023), Lessons Learnt From Consolidating ML Models in a Large Scale Recommendation System, Netflix Technology Blog, https://netflixtechblog.medium.com/lessons-learnt-from-consolidating-ml-models-in-a-large-scale-recommendation-system-870c5ea5eb4a.
  28. Neira E., Clares-Gavilán J., Sánchez-Navarro J. (2021), New audience dimensions in streaming platforms: the second life of Money heist on Netflix as a case study, in «Profesional De La Información», 30(1).
  29. Nielsen (2023), Lo streaming raggiunge la quota record del 38,7% della fruizione televisiva totale a luglio, con i titoli acquisiti che superano i nuovi originali, https://www.nielsen.com/it/insights/2023/streaming-grabs-a-record-38-7-of-total-tv-usage-in-july-with-acquired-titles-outpacing-new-originals/.
  30. Pariser E. (2011), The filter bubble: what the Internet is hiding from you, Viking, London, 2011; trad. it (2012), Il filtro: quello che internet ci nasconde, Il Saggiatore, Milano.
  31. Parrot Analytics (2023), Parrot Perspective: How Much Is a Global Hit Teen Show Worth to Netflix and Why It Matters, https://www.parrotanalytics.com/parrot-perspective/apple-netflix-ted-lasso-elite-acquisition-retention-content-optimization.
  32. Pescatore G. (2014), Piracy and Consumption of Digital Goods, in Beltrame A., Fales L., Fidotta G. (eds.), Whose Right? Media, Intellectual Property and Autorship in the Digital Era, Forum, Udine.
  33. Pescatore G. (2019), Anche sulle piattaforme digitali lo scripted resta televisione, in «Link» n. 25.
  34. Rasmussen T. (2014), Personal media and everyday life: a networked lifeworld, Palgrave Macmillan, Basingstoke.
  35. Ravindran M. (2019), Netflix: Humans, not machines, greenlight our shows, Television Business International, https://tbivision.com/2019/03/11/netflix-humans-not-machines-greenlight-our-shows/.
  36. Re V. (a cura di) (2017), Streaming media. Distribuzione, circolazione, accesso, Mimesis, Milano-Udine 2017.
  37. Ricci F., Rokach L., Shapira B. (2011), Recommender Systems Handbook, Springer, New York.
  38. Roy D., Dutta M. (2022), A systematic review and research perspective on recommender systems, in «J Big Data», 9(59).
  39. Statista (2022), Netflix, in https://www.statista.com/study/15313/netflix-statista-dossier/.
  40. Statista (2023a), Video-on-demand: Netflix users in the United States, in https://www.statista.com/study/73427/video-on-demand-netflix-users-in-the-united-states/.
  41. Statista (2023b), Amazon Prime Video, in: https://www.statista.com/topics/4740/amazon-prime-video/.
  42. Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., Basilico, J. (2021). Deep Learning for Recommender Systems: A Netflix Case Study, in «AI Magazine», 42(3), 7-18.
  43. Striphas T. (2015), Algorithmic culture, in «European Journal of Cultural Studies», 18(4-5). DOI: 10.1177/136754941557739
  44. Hallinan B., Striphas T. (2016), Recommended for you: The Netflix Prize and the production of algorithmic culture, in «New Media & Society», 18(1). DOI: 10.1177/14614448145386
  45. Sunstein C. R. (2017), #Republic: Divided Democracy in the Age of Social Media, Princeton University Press, Princeton; trad. it. (2017), #Republic: la democrazia nell’epoca dei social media, Il Mulino, Bologna.
  46. Tapscott D., Williams A.D. (2006), Wikinomics: How Mass Collaboration Changes Everything, Portfolio, New York; trad. it. (2007), Wikinomics. La collaborazione di massa che sta cambiando il mondo, Etas, Milano.
  47. Toffler A. (1980), The Third Wave, William Morrow, New York; trad. it. (1987), La terza ondata, Sperling & Kupfer, Milano.
  48. Varela D., Kaun A. (2019), The Netflix Experience: A User-Focused Approach to the Netflix Recommendation Algorithm, in Plothe T., Buck A.M. (eds.), Netflix at the Nexus: Content, Practice, and Production in the Age of Streaming Television (pp. 197-211). Peter Lang, New York.

Guglielmo Pescatore, Profilazione algoritmica e neogeneralismo: il paradosso della personalizzazione dei media nell’era delle piattaforme di streaming in "SOCIOLOGIA DELLA COMUNICAZIONE " 66/2023, pp 21-41, DOI: 10.3280/SC2023-066002