Neurosviluppo e vaccini: dall’epigenetica alla clinica

Titolo Rivista PNEI REVIEW
Autori/Curatori Cristina Panisi, Ernesto Burgio
Anno di pubblicazione 2018 Fascicolo 2018/1
Lingua Italiano Numero pagine 16 P. 76-91 Dimensione file 1136 KB
DOI 10.3280/PNEI2018-001007
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

La ridotta percezione dell’utilità dei vaccini e il timore di effetti indesiderati hanno motivato la crescente titubanza nei confronti della vaccinoprofilassi negli ultimi anni. In particolare, la paura che i vaccini possano provocare autismo rappresenta il principale motivo di esitazione. Il tentativo di mettere sullo sfondo la paura dell’autismo mettendo in primo piano la paura delle malattie infettive appare una strategia poco efficace, poiché orienta la scelta sulla base dell’emotività e non della consapevolezza. Con l’intento di attenuare i timori dell’autismo attraverso una migliore conoscenza di questa condizione, verrà descritto il modello patogenetico che meglio rende conto delle modalità di insorgenza e delle caratteristiche cliniche dei disturbi dello spettro autistico. La presentazione porterà a concludere che un semplicistico modello tradizionale di causa-effetto non è in grado di giustificare le caratteristiche epidemiologiche e cliniche dell’autismo. Dunque, non la colpevolizzazione di un singolo fattore di rischio, bensì la consapevolezza della complessità del modello patogenetico, potrà orientare verso un efficace intervento di prevenzione primaria per i disturbi del neurosviluppo.;

Keywords:Vaccinazioni, Titubanza vaccinale, Disturbi del neurosviluppo, Epigenetica, Neuroinfiammazione, Prevenzione primaria.

  1. Knuesel I., Chicha L., Britschgi M., Schobel S.A., Bodmer M., Hellings J.A., Toovey S. and Prinssen E.P. (2014). Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol., 10: 643-660.
  2. Kundakovic M., Gudsnuk K., Herbstman J.B., Tang D., Perera F.P. and Champagne F.A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. PNAS, 112(22): 6807-6813.
  3. Landrigan P.J., Sonawane B., Butler R.N., Trasande L., Callan R. and Droller D. (2005). Early environmental origins of neurodegenerative disease in later life. Environ. Health. Perspect. 113(9): 1230-1233.
  4. Levy S.E., Mandell D.S. and Schultz R.T. (2009). Autism. Lancet, 374(9701): 1627-1638. DOI: 10.1016/S0140-6736(09)61376-
  5. Lord C., Shulman C. and DiLavore P. (2004). Regression and word loss in autistic spectrum disorders. J. Child Psychol. Psychiatry, 45(5): 936-955.
  6. Moya-Pérez A., Luczynski P., Renes I.B., Wang S., Borre Y., Anthony Ryan C., Knol J., Stanton C., Dinan T.G. and Cryan J.F. (2017). Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev., 75(4): 225-240.
  7. McElhanon B.O., McCracken C., Karpen S. and Sharp W.G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics, 133(5): 872-883.
  8. Panisi C. (2016). Aspetti immunitari dell’autismo. In: Keller R., a cura di, I disturbi dello spettro autistico in adolescenza e in età adulta. Trento: Edizioni Centro Studi Erickson.
  9. Patterson P.H. (2009). Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain. Res., 204(2): 313-321.
  10. Pellegrino P., Clementi E. and Radice S. (2015). On vaccines adjuvants and autoimmunity: Current evidence and future perspectives. Autoimmun. Rev., 14(10): 880-888.
  11. Poland C. and Brunson E.K. (2015). The need for a multi-disciplinary perspective on vaccine hesitancy and acceptance. Vaccine, 33(2): 277-279.
  12. Reisinger S., Khan D., Kong E., Berger A., Pollak A. and Pollak D.D. (2015). The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol. Ther., 149: 213-226.
  13. Schwarz J.M. and Bilbo S.D. (2012). Sex, glia, and development: interactions in health and disease. Horm. Behav., 62(3): 243-253.
  14. Shoenfeld Y. and Agmon-Levin N. (2011). ‘ASIA’–autoimmune/infl ammatory syndrome induced by adjuvants. J. Autoimmun., 36(1): 4-8.
  15. Kipnis J. (2016). Multifaceted interactions between adaptive immunity and the central nervous system. Science, 353(6301): 766-771.
  16. Aldinger K.A., Lane C.J., Veenstra-VanderWeele J. and Levitt P. (2015). Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder. Autism Res., 8(6): 771-781.
  17. Anholt G.E., Cath D.C., van Oppen P., Eikelenboom M., Smit J.H., van Megen H. and van Balkom A.J. (2010). Autism and ADHD symptoms in patients with OCD: are they associated with specifi c OC symptom dimensions or OC symptom severity?. J. Autism. Dev. Disord., 40(5): 580-589.
  18. Ashwood P., Corbett B.A., Kantor A., Schulman H., Van de Water J. and Amaral D.G. (2011). In search of cellular immunophenotypes in the blood of children with autism. PLoS One. 6(5): e19299.
  19. Bach J.F. (2002). The effect of infections on susceptibility to autoimmune and allergic diseases. NEJM, 347(12): 911-920.
  20. Bilbo S.D. and Schwarz J.M. (2012). The immune system and developmental programming of brain and behavior. Front. Neuroendocrinol., 33(3): 267-286.
  21. Backhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y., Xia Y., Xie H., Zhong H., Khan M.T., Zhang J., Li J., Xiao L., Al-Aama J., Zhang D., Lee Y.S., Kotowska D., Colding C., Tremaroli V., Yin Y., Bergman S., Xu X., Madsen L., Kristiansen K., Dahlgren J. and Wang J. (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17: 690-703.
  22. Blomström Å., Karlsson H., Gardner R., Jörgensen L., Magnusson C. and Dalman C. (2016). Associations Between Maternal Infection During Pregnancy, Childhood Infections, and the Risk of Subsequent Psychotic Disorder--A Swedish Cohort Study of Nearly 2 Million Individuals. Schizophr. Bull., 42: 125-133.
  23. Stilling R.M., Dinan T.G. and Cryan J.F. (2014). Microbial genes, brain & behavior – epigenetic regulation of the gut–brain axis. Genes Brain Behav.,13(1): 69-86.
  24. Sweeten T.L., Bowyer S.L., Posey D.J., Halberstadt G.M. and McDougle C.J. (2003). Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics, 112(5): e420.
  25. Swiatczak B. and Rescigno M. (2012). How the interplay between antigen presenting cells and microbiota tunes host immune responses in the gut. Semin. Immunol., 24(1): 43-49.
  26. Tang B., Jia H., Kast R.J. and Thomas E.A. (2013). Epigenetic changes at gene promoters in response to immune activation in utero. Brain Behav. Immun,, 30: 168-175.
  27. Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W. and Pardo C.A. (2005). Neuroglial activation and neuroinfl ammation in the brain of patients with autism. Ann. Neurol., 57(1): 67-81.
  28. Virtanen H.E., Rajpert-De Meyts E., Main K.M., Skakkebaek N.E. and Toppari J. (2005). Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol. Appl. Pharmacol., 207(2 Suppl): 501-505.
  29. Wiertsema S.P., Chidlow G.R., Kirkham L.A., Corscadden K.J., Mowe E.N., Vijayasekaran S., Coates H.L., Harnett G.B. and Richmond P.C. (2011). High Detection Rates of Nucleic Acids of a Wide Range of Respiratory Viruses in the Nasopharynx and the Middle Ear of Children With a History of Recurrent Acute Otitis Media. J. Med. Virol., 83: 2008-2017.
  30. World Health Organization (2013). VACCINE SAFETY BASICS learning manual Module 2- Type of vaccines and adverse reactions. Testo disponibile al sito: http://www.who.int/vaccine_safety/initiative/tech_support/Vaccine-safety-E-course-manual.pdf, consultato il 01/03/2018.
  31. Brookmeyer R., Johnson E., Ziegler-Graham K. and Arrighi H.M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 3(3): 186-191.
  32. Burgio E. (2011). Il problema dell’incremento dei tumori infantili. Cancerogenesi transplacentare e transgenerazionale. In: Ridolfi R., a cura di, Progetto Ambiente e Tumori. Milano: AIOM.
  33. Burgio E. (2013). Notes on the epigenetic origins of childhood cancer. Epidemiol. Prev., 37(1 Suppl 1): 261-265.
  34. Burgio E. (2015). Environment and Fetal Programming: the origins of some current “pandemics”. J. Pediatr. Neonat. Individual Med., 4(2): e040237. DOI: 10.7363/04023
  35. Burgio E., Lopomo A. and Migliore L. (2015). Obesity and diabetes: from genetics to epigenetics. Mol. Biol. Rep., 42(4): 799-818.
  36. Burgio E. e Panisi C. (2017). La pandemia silenziosa dei disturbi del neurosviluppo. PNEI Review 1: 17-32.
  37. Centers for Disease Control and Prevention. (2007). Prevalence of autism spectrum disorders – Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2002. MMWR Surveill. Summ., 56(SS1): 12-28.
  38. Centers for Disease Control and Prevention. (2012). Prevalence of autism spectrum disorder – Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveill. Summ., 61(SS03): 1-19.
  39. Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R. and Huh J.R. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276): 933-939.
  40. Crépeaux G., Eidi H., David M.O., Baba-Amer Y., Tzavara E., Giros B., Authier F.J., Exley C., Shaw C.A., Cadusseau J. and Gherardi R.K. (2017). Non-linear doseresponse of aluminium hydroxide adjuvant particles: Selective low dose neurotoxicity. Toxicology, 375: 48-57.
  41. De Theije C.G., Wu J., da Silva S.L., Kamphuis P.J., Garssen J., Korte S.M. and Kraneveld A.D. (2011). Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol., 668 Suppl 1: S70-80.
  42. Dittman S., Wharton M., Vitek C., Ciotti M., Galazka A., Guichard S., Hardy I., Kartoglu U., Koyama S., Kreysler J., Martin B., Mercer D., Rønne T., Roure C., Steinglass R., Strebel P., Sutter R. and Trostle M. (2000). Successful Control of Epidemic Diphtheria in the States of the Former Union of Soviet Socialist Republics: Lessons Learned. J. Infec. Dis., 181 Suppl 1: S10-S22. DOI: 10.1086/31553
  43. El Aidy S., Dinan T.G. and Cryan J.F. (2015). Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clin. Ther., 37(5): 954-967.
  44. Esposito S., Prada E., Mastrolia M.V., Tarantino G., Codecà C. and Rigante D. (2014). Autoimmune/infl ammatory syndrome induced by adjuvants (ASIA): clues and pitfalls in the pediatric background. Immunol. Res., 60(2-3): 366-375.
  45. Estes M.L. and McAllister A.K. (2015). Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci., 16(8): 469-486.
  46. Estes M.L. and McAllister A.K. (2016a). Maternal immune activation: implications for neuropsychiatric disorders. Science, 353(6301): 772-777.
  47. Estes M.L. and McAllister A.K. (2016b). IMMUNOLOGY. Maternal TH17 cells take a toll on baby’s brain. Science, 351(6276): 919-920.
  48. Fombonne E. (2009). Epidemiology of pervasive developmental disorders. Pediatr. Res., 65(6): 591-598.
  49. Gatti A.M. and Montanari S. (2017). New Quality-Control Investigations on Vaccines: Micro- and Nanocontamination. Int. J. Vaccines Vaccin., 4(1): 00072.
  50. Gillman M.W., Barker D., Bier D., Cagampang F., Challis J., Fall C., Godfrey K., Gluckman P., Hanson M., Kuh D., Nathanielsz P., Nestel P. and Thornburg K.L. (2007). Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr. Res., 61(5 Pt 1): 625-629.
  51. Gluckman P.D. and Hanson M.A. (2004). Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res., 56(3): 311-317. DOI: 10.1203/01.PDR.0000135998.08025.F
  52. Hahné S., Macey J., Tipples G., Varughese P., King A., van Binnendijk R., Ruijs H., van Steenbergen J., Timen A., van Loon A. M. and de Melker H. (2005) Rubella outbreak in an unvaccinated religious community in the Netherlands spreads to Canada. Euro Surveill., 10(20): E050519.1.
  53. Hahné S., Macey J., van Binnendijk R., Kohl R., Dolman S., van der Veen Y., Tipples G., Ruijs H., Mazzulli T., Timen A., van Loon A. and de Melker H. (2009),. Rubella Outbreak in the Netherlands, 2004-2005: High Burden of Congenital Infection and Spread to Canada. Ped. Infect. Dis. J., 28(9): 795-800.
  54. Holt P.G. and Jones C.A. (2000). The development of the immune system during pregnancy and early life. Allergy, 55(8): 688-697.
  55. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., Codelli J.A., Chow J., Reisman S.E., Petrosino J.F., Patterson P.H. and Mazmanian S.K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155: 1451-1463.

Cristina Panisi, Ernesto Burgio, Neurosviluppo e vaccini: dall’epigenetica alla clinica in "PNEI REVIEW" 1/2018, pp 76-91, DOI: 10.3280/PNEI2018-001007