Types of Big Data and designs of evaluation research

Journal title RIV Rassegna Italiana di Valutazione
Author/s Biagio Aragona
Publishing Year 2018 Issue 2017/68
Language Italian Pages 15 P. 48-62 File size 376 KB
DOI 10.3280/RIV2017-068004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The use of Big Data can represent a valuable way to inspire decision making at all levels of public administration and government in a time of scarce resources. Nevertheless, new digital data have not deployed their potential in the public arena as they did in the corporations. One reason is that there is still little knowledge about what kind of data can be usefully managed, at what policy level they are really demanded, how they are collected, organized, integrated and interrogated, by whom and for what purposes. There is therefore the need to show how to apply Big Data to policy evaluation and research. According to a typology of Big Data (Aragona, 2016) five examples of Big Data research are presented, in order to show some principal opportunities and challenges that these data offer to policy making and evaluation.

Keywords: Big Data Research; Research Design; Evaluation Research; Evaluation Objective; Big Data Typology.

  1. Amaturo E, Punziano G, (2015) I mixed methods nella ricerca sociale, Roma: Carocci
  2. Aragona, B. (2018). Una nuova cultura del dato. Sociologia e ricerca sociale, 87(3): 151-173, DOI: 10.3280/SR2018-087004
  3. Aragona, B. (2016). Big Data or data that are getting bigger?. Sociologia e ricerca sociale, 109(3): 42-53, DOI: 10.3280/SR2016-109005;
  4. Aragona B., Zindato D. (2016), Counting people in the data revolution era: challenges and opportunities for population censuses, International Review of Sociology, 26(3), 367-385, DOI: 10.1080/03906701.2016.124492
  5. Bezzi, C.. (2001) Il disegno della ricerca valutativa, Milano: Franco Angeli.
  6. Boccia Artieri, G. (2015). Gli effetti sociali del web. Forme della comunicazione e metodologie della ricerca online. Milano: FrancoAngeli.
  7. Botta, F., Moat, H. S., and Preis, T. (2015). Quantifying crowd size with mobile phone and Twitter data. Royal Society open science, 2(5): 150-162.
  8. Boyd, D., Crawford, K. (2012). Critical questions for Big Data. Information, Communication and Society, 15(5): 662–679.
  9. Clubb, J.M., Scheuch, E.K. (1980), Historical social research: the use of historical and processproduced data. Stuttgart: Klett-Cotta;
  10. Conte, R. (2016), Big Data: un’opportunità per le scienze sociali?, Sociologia e Ricerca Sociale, 109(3), 18-27.
  11. Davies, T. (2013). Open data barometer: 2013 global report. World Wide Web Foundation and Open Data Institute.
  12. Diesner, J. (2015). Small decisions with big impact on data analytics. Big Data & Society, 2(2), 24-32, DOI: 10.1177/20253951715617185
  13. Elias P (2012) Big data and the social sciences: a perspective from the ESRC, presentation at the conference Shaping society.
  14. Gray, E., Jennings, W., Farrall, S., and Hay, C. (2015). Small Big Data: Using multiple data-sets to explore unfolding social and economic change. Big Data & Society, 2(1),
  15. Höchtl, J. Parycek, P., and Schöllhammer, R. (2016). Big Data in the policy cycle: Policy decision making in the digital era, Journal of Organizational Computing and Electronic Commerce, 26:1-2, 147-169, DOI: 10.1080/10919392.2015.112518
  16. King G., Pan J., Roberts M. E. (2013). How censorship in China allows government criticism but silences collective expression, American Political Review, 107(2), 2013, 326-43.
  17. Kitchin, R. (2014) The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. London: Sage.
  18. Kourtit, K., Nijkamp, P., and Arribas-Bel, D. (2012). Smart cities perspective – a comparative European study by means of self-organizing maps, Innovation, 25(2): 229-46
  19. Lettieri, N. 2016, Computational Social Science, the Evolution of Policy Design and Rule Making in Smart Societies, Future internet, 8, 19, 1-17.
  20. Lorentzen, P. (2014). China’s strategic censorship, American Journal of Political Science 58(2): 402–414.
  21. Lyon, D. (2007). Surveillance Studies: An overview, Cambridge: Polity.
  22. Marradi A (2006) Metodologia delle scienze sociali. Bologna: Il Mulino.
  23. Manning, C.D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.
  24. Martinotti, G. (1988) Metropolitan areas in Italy 1961-1981: A statistical exploration into criteria for definition. working paper of the Second international conference on policies strategies and projects for metropolitan areas;
  25. Mattern, S. (2013) Methodolatry and the art of measure: the new wave of urban data science. Design Observer: Places, 5 November -- http://designobserver.com/places/feature/0/38174.
  26. Milan, S. (2017). Data activism as the new frontier of media activism, in Media Activism in the Digital Age, G. Yang and V. Pickard (eds), London: Routledge.
  27. OECD, (2015). Exploring Data Driven Innovation as a New Source of Growth mapping the policy issues raised by “Big Data”. OECD. Sagiroglu, S. and Sinanc, D. (2013). Big Data: A review. In Collaboration Technologies and Systems (CTS), 2013 International Conference CTS 20-24 May San Diego. IEEE: (pp. 42-47).
  28. Savage, M., Burrows R (2007) The coming crisis of empirical sociology. Sociology 41(5): 885–899.
  29. Savage, M., Burrows, R. (2014). After the Crisis? Big Data and the Methodological Challenges of Empirical Sociology. Big Data and Society, April-June, pp. 1-6, DOI: 10.1177/2053951714540280
  30. Stame, N. (1998). L'esperienza della valutazione. Roma: Seam.
  31. Sen, A. (1982). Choice, welfare and measurement. Cambridge, MA: Harvard University Press;
  32. Supiot, A. (2016) La Gouvernance par les nombres, Paris: Fayard.
  33. Sundgren, B. (1995). Guidelines for the Modelling of Statistical Data and Metadata. New York: U.N.
  34. Taylor, L, Schroeder, R. and Meyer, E. (2014). Emerging practices and perspectives on Big Data analysis in economics: Bigger and better or more of the same?. Big Data and Society, 1(2): 7-16. DOI: 10.1177/20253951715602908
  35. Vemuganti, G. (2013) Metadata Management in Big Data. Infosys Labs Briefings, 11(1), pp.16-20; Webb, E.J. Campbell, D.T., Schwartz R.D. (1966). Unobtrusive Methods: Non-reactive Research in the Social Sciences. Chicago: Rand McNally.

  • Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines Suania Acampa, Ciro Clemente De Falco, Domenico Trezza, pp.761 (ISBN:9781668463031)
  • Handbook of Research on Advanced Research Methodologies for a Digital Society Suania Acampa, Ciro Clemente De Falco, Domenico Trezza, pp.176 (ISBN:9781799884736)

Biagio Aragona, Types of Big Data and designs of evaluation research in "RIV Rassegna Italiana di Valutazione" 68/2017, pp 48-62, DOI: 10.3280/RIV2017-068004