Il Fuzzy Cognitive Mapping come supporto alle decisioni nei processi di policymaking urbani: un caso applicativo

Titolo Rivista ARCHIVIO DI STUDI URBANI E REGIONALI
Autori/Curatori
Anno di pubblicazione 2019 Fascicolo 2019/124
Lingua Italiano Numero pagine 26 P. 122-147 Dimensione file 222 KB
DOI 10.3280/ASUR2019-124006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

La consapevolezza circa la complessita ambientale comporta iniziative di pianificazioneintrinsecamente connesse ad una real-time knowledge. Partendo dallepotenzialita della fuzzy logic nella trattazione dell’incertezza, questo studio utilizzale fuzzy cognitive maps per esplorare tale complessita e supportare le decisionimulti-agente. L’analisi viene svolta nell’ambito del processo di costruzione di scenariper il nuovo piano di Taranto (Italia).;

Keywords:Fuzzy cognitive maps; Decision support systems; Politiche urbane;Policy-making; Sistemi ambientali complessi

  1. Aguilar J. (2003). A Dynamic FCM Approach Based on Random Neural Networks. International Journal of Computational Cognition, 1(4): 91-107.
  2. Aguilar J. (2005). A survey about FCM papers. International Journal of computational cognition, 3(2): 27-33.
  3. Axelrod R. (1976). Structure of decision: The cognitive maps of political elites. Princento: Princeton University Press.
  4. Borri D. and Camarda D. (2006). Visualizing space-based interactions among distributed agents: Environmental planning at the inner-city scale. Lecture Notes in Computer Science, 4101: 182-191.
  5. Borri D. and Camarda D. (2011). Planning for the environmental quality of urban microclimate: A multiagent-based approach. Lecture Notes in Computer Science, 6874:129-136.
  6. Borri D., Camarda D. and De Liddo A. (2004). Envisioning environmental futures: Multi-agent knowledge generation, frame problem, cognitive mapping. Lecture Notes in Computer Science, 3190: 230-237.
  7. Borri D., Camarda D. and De Liddo A. (2008). Multi-agent environmental planning: A forum-based case-study in Italy. Planning Practice and Research, 23(2): 211-228.
  8. Borri D., Camarda D. and Pluchinotta I. (2013). Planning urban microclimate through multiagent modelling: A cognitive mapping approach. In: Luo Y., ed., Cooperative Design, Visualization, and Engineering, CDVE2013, Lecture Notes in Computer Science, 8091: 169-176.
  9. Borri D., Camarda D. and Pluchinotta I. (2014). Planning for the microclimate of urban spaces: Notes from a multi-agent approach. In Luo Y., ed., Cooperative Design, Visualization, and Engineering, CDVE 2014, Lecture Notes in Computer Science, 8683: 179-182. Borri D., Camarda D. and Grassini L. (2002) (eds.). Sustainable Planning for Soil and Water: The Mediterranean. Paris: L’Harmattan.
  10. Bossomaier T.R.J. and Green D.G. (2000). Complex Systems: Cambridge University Press.
  11. Camarda D. (2010). Beyond citizen participation in planning: Multi-agent systems for complex decision making. In: Nunes Silva C., ed., Handbook of Research on E-planning: ICTs for Urban Development and Monitoring. Hershey PA: IGI Global, 195-217.
  12. Camarda D., Rotondo F. and Selicato F. (2014). Strategies for dealing with urban shrinkage: Issues and scenarios in Taranto. European Planning Studies, 23(1): 126-146.
  13. Dickerson J. and Kosko B. (1996). Virtual worlds as fuzzy dynamic systems. In: Technology for Multimedia, 1996. IEEE Press.
  14. Fischer F. (2000). Citizens, Experts, and the Environment: The Politics of Local Knowledge: Durham: Duke University Press.
  15. Friend J.K. and Hickling A. (1997). Planning Under Pressure: The Strategic Choice Approach. Amsterdam: Elsevier.
  16. Friedmann J. (1987). Planning in the Public Domain: From Knowledge to Action. Princeton: Princeton University Press.
  17. Giordano R. and Vurro M. (2010). Fuzzy cognitive map to support conflict analysis in drought management. In: Micheal G., ed., FCM Advances in Theory, Methodologies, Tools and Applications. Berlin-Heidelberg: Springer-Verlag.
  18. Giordano R., D’Agostino D., Apollonio C., Lamaddalena N. and Vurro M. (2013). Bayesian Belief Network to support conflict analysis for groundwater protection: The case of the Apulia region. Journal of Environmental Management, 115: 136-146.
  19. Giordano R., Pagano A., Pluchinotta I., Olivo del Amo R., Hernandez S.M. and Lafuente E.S. (2017). Modelling the complexity of the network of interactions in flood emergency management: The Lorca flash flood case. Environmental Modelling and Software, 95: 180-195.
  20. Groumpos P.P. (2010). Fuzzy cognitive maps: Basic theories and their application to complex systems. In: Glykas M., eds., Fuzzy Cognitive Maps. Studies in Fuzziness and Soft Computing, 247. Berlin-Heidelberg: Springer.
  21. Jungk R. and Mullert N. (1996). Future Workshop: How to Create Desirable Futures. London: Institute for Social Inventions.
  22. Khakee A., Barbanente A., Camarda, D. and Puglisi M. (2002a). With or without? Comparative study of preparing participatory scenarios using computer-aided and traditional brainstorming. Journal of Future Research, 6: 45-64.
  23. Khakee A., Barbanente A. and Puglisi M. (2002b). Scenario building for Metropolitan Tunis. Futures, 34: 583-596.
  24. King R. (1985). The Industrial Geography of Italy. London: Routledge.
  25. Kok K. (2009). The potential of FCM for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change, 19: 122-133.
  26. Kosko B. (1986). FCM. International Journal of man-machine studies, 24(1): 65-75.
  27. Kosko B. (1988). Hidden patterns in combined and adaptive knowledge networks. International Journal of Approximate Reasoning, 2(4): 377-393. Licker P.S. (1987). Fundamentals of systems analysis with application design. New York: Boyd and Fraser.
  28. Lippe M. (2011). Building on qualitative datasets and participatory processes to simulate land use change in a mountain watershed of Northwest Vietnam.
  29. Enviromental Modelling and Software, 26 (12): 1454-1466.
  30. Minucci F. (1996) (ed.). Le regioni industrializzate tra declino e innovazione. Milano: FrancoAngeli.
  31. Wratten S., Sandhu H., Cullen R. and Costanza R. (2013). Ecosystem Services in Agricultural and Urban Landscapes. London: Wiley.
  32. Zimmermann H.J. (2010). Fuzzy set theory. Wiley Interdisciplinary Rev.: Computational Statistics, 2(3): 317-332.
  33. Ozesmi U. and Ozesmi S.L. (2004). Ecological models based on people’s knowledge: A multi-step FCM approach. Ecological Modelling, 176(1-2): 43-64.
  34. Papageorgiou E. and Kontogianni A. (2012). Using FCM in environmental decision making and management: a methodological primer and an application. INTECH Open Access Publisher.
  35. Rabino G.A. (2005). Processi decisionali e territorio nella simulazione multiagente. Milano, Esculapio.
  36. Robson B.T. (1988). Those Inner Cities: Reconciling the Economic and Social Aims of Urban Policy. London: Clarendon Press.
  37. Rodwin L. and Sazanami H. (1991). Industrial Change and Regional Economic Transformation: The Experience of Western Europe. London: Taylor and Francis.
  38. Sano M., Richards R. and Medina R. (2014). A participatory approach for system conceptualization and analysis applied to coastal management in Egypt. Eniviromental Modelling and Software, 54: 142-152.
  39. Sawyer R.K. (2005). Social Emergence: Societies as Complex Systems. Cambridge: Cambridge University Press.
  40. Schachter G. (1965). The Italian South. New York: Random House.
  41. Stach W., Kurgan L. and Pedrycz W. (2008). Numerical and linguistic prediction of time series with the use of fuzzy congitive maps. IEEE Trans. Fuzzy system, 16(1): 61-72.
  42. Stach W., Kurgan L. and Pedrycz W. (2010). Expert-based and computational methods from developing fuzzy cognitive maps. In: Michael G., ed., Fuzzy Cognitive Maps Advances in Theory, Methodologies, Tools and Applications. Berlin Heidelberg: Springer-Verlag, 23-24.
  43. Stylos C. and Groumpos P. (2004). Modelling clomex systems using fuzzy coignitive maps. IEEE transactions on system, man and cybernetic, 34(1): 155-162.
  44. Tolman E.C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4): 189.
  45. Townshend T. (2006). From Inner City to Inner Suburb? Addressing Housing
  46. Aspirations in Low Demand Areas in Newcastle Gateshead, UK. Housing Studies, 21(4): 501-521.
  47. Wierzbicki A., Makowski M. and Wessels J. (2000). Model-based decision support methodology with environmental applications. Dordrecht: Kluwer Academic Publishers.

, Il Fuzzy Cognitive Mapping come supporto alle decisioni nei processi di policymaking urbani: un caso applicativo in "ARCHIVIO DI STUDI URBANI E REGIONALI" 124/2019, pp 122-147, DOI: 10.3280/ASUR2019-124006