Titolo Rivista RIVISTA ITALIANA DI ACUSTICA
Autori/Curatori Alessandro Monticelli
Anno di pubblicazione 2024 Fascicolo 2023/2
Lingua Italiano Numero pagine 7 P. 17-23 Dimensione file 0 KB
DOI 10.3280/ria2-2023oa15509
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più
clicca qui
FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche
Nel seguente lavoro è stata proposta una metodologia basata su tecniche di deep learning per la valutazione delle condizioni della superficie stradale a partire da segnali acustici misurati all’interno della cavità dello pneumatico. Il progetto è stato svolto in collaborazione con Ipool srl., nel contesto del progetto SURFAce, finanziato dalla regione Toscana. Sono state proposte tre architetture di classificazione: una LSTM (Long short-term memory network) basata sull’andamento temporale di un insieme di descrittori spettrali e due CNN (Convolutional neural network), una incentrata sugli spettrogrammi dei segnali, l’altra sui Mel-frequency cepstral coefficients (MFCC). Il dataset di ground truth è stato acquisito tramite un laboratorio mobile e classificato mediante strumenti di analisi appositamente sviluppati. Due delle tre architetture proposte hanno fornito risultati incoraggianti. L’implementazione di tali strumenti su dispositivi mobili potrebbe rendere possibile la classificazione dello stato della pavimentazione in tempo reale con ridotti costi economici e temporali.;
Keywords:; tire cavity noise, deep learning, valutazione delle condizioni stradali
Alessandro Monticelli, Metodi di deep learning acustico per il riconoscimento dei dissesti della pavimentazione stradale in "RIVISTA ITALIANA DI ACUSTICA" 2/2023, pp 17-23, DOI: 10.3280/ria2-2023oa15509