Territorial Impact of Education Sector Reforms on the Demand for Teachers

Journal title SCIENZE REGIONALI
Author/s Alessandro Belmonte, Aline Pennisi
Publishing Year 2013 Issue 2013/1
Language Italian Pages 28 P. 87-114 File size 567 KB
DOI 10.3280/SCRE2013-001005
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Recent reforms have been determining a switch in education demand in primary and upper secondary schools. Using a simulation model based on the latest demographic forecasts, one may assess the evolution of the education demand from 2010 to 2027 for each Italian province to estimate the need for teachers. We analyzed 18 different scenarios to compare teachers need before and after the reforms providing a quantitative evaluation of their impact. Demographic trends and potential for an increase of the participation to upper secondary school will bring teachers need to grow more in the North and Center but less in the South. However, the reduction of demand in the South does not entirely compensate the increase in the other areas of the country. Wide territorial diversity will affect the complexity of planning the school network and staff allocation for the next few years.

Keywords: Education reforms, demand for schooling, need for teachers.

Jel codes: C53, H52, J11

  1. Andersen D. F. (1990), Analyzing who Gains and Who Loses: The Case of School Finance Reform in New York State. System Dynamics Review, 6, 1: 21-43. DOI: 10.1002/sdr.4260060103
  2. Barbieri G., Cipollone P., Sestito P. (2008), Labour Market for Teachers: Demographic Characteristics and Allocative Mechanisms. Roma: Banca d'Italia, Temi di Discussione n. 672.
  3. Barbieri G., Rossetti C., Sestito P. (2010), The Determinants of Teacher Mobility: Evidence from a Panel of Italian Teachers. Roma: Banca d'Italia, Temi di Discussione n. 761.
  4. Bordignon M., Fontana A. (2010), Federalismo e istruzione. La scuola italiana nell'ambito del processo di decentramento istituzionale. Torino: Fondazione Giovanni Agnelli, FGA Working Paper n. 34.
  5. Brunello G., Rocco L. (2010), Istruzione: Costi Standard e Riforma Federalista. Padova, maggio, mimeo.
  6. Cappello G., Cipollone P., Pennisi A. (2009), Il controllo della spesa in istruzione: una questione di metodo. In: Guerra M. C., Zanardi A. (a cura di), La finanza pubblica italiana – Rapporto 2009. Bologna: il Mulino.
  7. Cesaroni G., Giovannola D. (2009), Formazione delle classi scolastiche e guadagni d'efficienza. Economia Pubblica, 3-4: 69-89.
  8. Chevalier A., Dolton P. (2004), The Labour Market for Teachers. Dublin: Centre For Economic Research, Department of Economics, University College Dublin Working Paper n. 04/11.
  9. Dolton P. (1996), Modelling the Labour Market for Teachers: Some Lessons from the UK. Education Economics, 4, 2: 187-205. DOI: 10.1080/09645299600000016
  10. Fontana A. (2008), La rete scolastica: un modello per il numero di studenti per classe nella scuola primaria e secondaria di I grado. Paper presentato alla XX Conferenza della Società italiana di economia pubblica. Pavia, settembre.
  11. Hsiao C. T., Peng H. L., Chien-Yuh Lee B. (2009), A Dynamic Demand-Supply Model For Elementary School Teachers in Taiwan. International Journal of Electronic Business Management, 7, 3: 190-200.
  12. Hussar W. J. (1999), Predicting the Need for Newly Hired Teachers in the United States to 2008-09. Washington DC: National Center for Education Statistics.
  13. Inman R. P. (1978), Optimal Fiscal Reform of Metropolitan Schools: Some Simulation Results. The American Economic Review, 68, 1: 107-122.
  14. McNamara J. F. (1971), Mathematical Programming Models in Educational Planning. Review of Educational Research, 41, 5: 419-446 DOI: 10.3102/00346543041005419
  15. MEF – Ministero dell'Economia e Finanze, MIUR – Ministero dell'Istruzione, Università e Ricerca (2007), Quaderno Bianco sulla Scuola, Roma.
  16. OECD (2005), Teachers Matter: Attracting, Developing And Retaining Effective Teachers. Paris: Oecd.
  17. Ragioneria Generale dello Stato (2011), Un modello per la simulazione di medio-lungo termine del fabbisogno scolastico – Simulazioni 2010-2027 e impatti differenziali delle riforme in corso. Roma (www.rgs.mef.gov.it).
  18. Ragioneria Generale dello Stato (2009), Il Rapporto sulla spesa delle Amministrazioni centrali dello Stato – anno 2009. Roma (www.rgs.mef.gov.it).
  19. Šaltenis V., Dzemyda G., Tiešis V. (2002), Quantitative Forecasting and Assessment Models in the State Education System. Informatica, 13, 4: 485-500.
  20. Santiago P. (2002), Teacher demand and supply: Improving Teaching Quality and Addressing Teacher Shortages. Paris: Oecd, Education Working Papers n. 1.
  21. Webster T. (2004), Cost Analysis and its Use in Simulation of Policy Options: The Papua New Guinea Education Finance Model. International Review of Education, 43, 1: 5-23. DOI: 10.1023/A:1002976716332

Alessandro Belmonte, Aline Pennisi, Impatto territoriale delle riforme dell’istruzione sul fabbisogno di insegnanti in "SCIENZE REGIONALI " 1/2013, pp 87-114, DOI: 10.3280/SCRE2013-001005