Neurobiological correlates in the elderly with alzheimer’s disease and other dementias

Journal title RICERCHE DI PSICOLOGIA
Author/s Antonio Guaita
Publishing Year 2013 Issue 2012/2-3 Language Italian
Pages 18 P. 389-406 File size 224 KB
DOI 10.3280/RIP2012-002016
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Alzheimer’s disease (AD) is a major cause of dementia in the elderly. The causative agent for any of the neurodegenerative dementias has not been cleared until today and is completely open the discussion about different pathogenetic hypotheses . This article is focused on Alzheimer’s disease not only because it is the prevalent cause of dementia (more than 50%), but also because it represents a paradigm of the problems posed by all neurodegenerative dementias, both in clarifying pathogenesis and in correlating biological-structural damage to functional deterioration. The characteristic lesions (extracellular neuritic plaques and intracellular neurofibrillary tangles) were correctly described more than 110 years ago, but only in the 70’s was clarified the nature of these formations, respectively due to the protein Amyloid Beta and Tau protein phosphorylated by unifying senile dementia and Alzheimer’ disease. The discovery of Beta Amyloid gave rise to the pathogenetic hypothesis of "amyloid cascade". Amyloid protein, mainly soluble oligomeric Abeta40-42, would be the source of the cell damage, producing neurofibrillary tangles of Tau protein, synaptic dysfunction and cortical atrophy in the temporo-parietal areas, especially the mesial temporal area, where it takes place early atrophy. As the Amyloid deposits are considered to be present more than a decade before symptoms, however the clinical severity of dementia has only a weak correlation with the presence of neuritic plaques, while it strongly correlates with the synaptic depletion and cortical atrophy, especially in the areas where cholinergic neurons are present. Cholinergic transmission has a key role in memory and other cognitive functions and drugs able to increase cholinergic transmission through the inhibition of acetylcholinesterase are currently in use as a symptomatic treatment of cognitive deficits. The Neurotoxicity is now mainly ascribed to the soluble forms of Beta Amyloid, while the plaques could also be in- terpreted as a consequence, in some way a possible mechanism of inactivation and defense against the oligomeric toxicity. The cerebral vascular damage may in itself cause dementia, but also has an important role in Alzheimer’s disease, where the vascular damages of various degrees are always present, so that the two entities are often not distinguishable. Other types of dementia are associated with Frontotemporal Lobar degeneration or with the deposition of Lewy body, but with advancing age the neuropathological findings overlap very frequently. Other types of dementia are associated with Frontotemporal Lobar degeneration or with the deposition of Lewy body, but with advancing age the neuropathological findings overlap very frequently also in the brain of persons free of dementias. This raises problems for the definition of the neurobiological findings of degenerative dementias that are not only technical but also conceptual in nature and epistemological.

Keywords: Dementia, Alzheimer’s disease, neuropathology, beta amyloid, biological markers.

  1. Marcello, E., Epis R., Saraceno, C., & Di Luca, M. (2012). Synaptic dysfunction in Alzheimer’s disease. Advances in Experimental Medicine and Biology, 970, 573
  2. Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, X., Blazey, T.M., Holtzman, D.M., Santacruz, A., Buckles, V., Oliver, A., Moulder, K., Aisen, P.S., Ghetti, B., Klunk, W.E., McDade, E., Martins, R.N., Masters, C.L., Mayeux, R., Ringman, J.M., Rossor, M.N., Schofield, P.R., Sperling, R.A., Salloway, S., Morris, J.C., & Dominantly Inherited Alzheimer Network (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The New England Journal of Medicine, 367, 795-804
  3. Bennett, D.A., Schneider, J.A., Bienias, J.L., Evans, D.A., & Wilson R.S. (2005). Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 64, 834-841.
  4. Birks, J. (2006). Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev, CD005593
  5. Bowen, D.M., Smith, C.B., White, P., & Davison, A.N. (1976). Neurotransmitterrelated enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459-496
  6. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239-259
  7. Braak, H., & Del Tredici, K. (2011). Alzheimer’s pathogenesis, is there neuron- to-neuron propagation? Acta Neuropathologica, 121, 589-595.
  8. Chui, H.C., Zarow, C., Mack, W.J., Ellis, W.G., Zheng, L., & Jagust, W.J. (2006). Cognitive impact of subcortical vascular and Alzheimer’s disease pathology. Annals of Neurology, 60, 677-687
  9. Coleman, P.D., & Yao, P.J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiology of Aging, 24, 1023-1027
  10. DeKosky, S.T, Scheff, S.W., & Styren, S.D. (1996). Structural correlates of cognition in dementia, quantification and assessment of synapse change. Neurodegeneration, 5, 417-421
  11. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M.N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., & Younkin, S. (1996). Increased amyloid- beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710-713.
  12. Farina, E., Baglio, F., Caffarra, P., Magnani, G., Scarpini, E., Appollonio, I., Bascelli, C., Cheldi, A., Nemni, R., Franceschi, M., Italian Group for Lewy Body Dementia and Dementias Associated to Parkinsonism, Messa, G., Mantovani, F., Bellotti, M., Olivotto, F., Alberoni, M., Isella, V., Regazzoni, R., Schiatti, E,. Vismara, C., Falautano, M., Barbieri, A., Restelli, I., Fetoni, V., Donato, M., Zuffi, M., & Castiglioni S. (2009). Frequency and clinical features of Lewy body dementia in Italian memory clinics. Acta Biomedica, 80, 57-64.
  13. Fotuhi, M., Hachinski, V., & Whitehouse, P.J. (2009). Changing perspectives regarding late-life dementia. Nature Reviews Neurology, 5, 649-658.
  14. Giannakopoulos, P., Herrmann, F.R., Bussière, T., Bouras C., Kövari E., Perl D. P., Morrison J.H., Gold G., & Hof, P.R. (2003). Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 60, 1495-1500.
  15. Glenner, G.G., & Wong, C.W. (1984). Alzheimer’s disease and Down’s syndrome, sharing of a unique cerebrovascular amyloid fibril protein. Biochemical and Biophysical Research Communications, 122, 1131-1135
  16. Gong, Y., Chang, L., Viola, K.L., Lambert, M.P., Frinch, C.E., Krafft, G.A., & Klein, W.L. (2003). Alzheimer’s disease-affected brain, presence of oligomeric A ligands (ADDLs) suggests a molecular basis for reversibile memory loss. Proceedings of the National Academy of Sciences of the United States of America, 100, 10417-10422.
  17. Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., & Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83, 4913–4917
  18. Hardy, J., & Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer’s disease, progress and problems on the road to therapeutics. Science, 297, 353-356
  19. Holtzman, D.M. (2011). CSF biomarkers for Alzheimer’s disease, current utility and potential future use. Neurobiol Aging, 32 Suppl 1, S4-9.
  20. Hoover, B.R., Reed, M.N., Su, J., Penrod, R.D., Kotilinek, L.A., Grant, M.K., Pitstick, R., Carlson, G.A., Lanier, L.M., Yuan, L.L., Ashe, K.H., & Liao, D. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 68, 6, 1067-1081
  21. Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., Mirra, S.S., Nelson, P.T., Schneider, J.A., Thal, D.R., Thies, B., Trojanowski, J.Q., Vinters, H.V., & Montine, T.J. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement, 8, 1-13.
  22. Hyman, B.T., & Trojanowski, J.Q. (1997). Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 56, 1095–1097
  23. Katzman, R. (1976). Editorial, The prevalence and malignancy of Alzheimer disease. A major killer. Archives of Neurology,33, 217-218
  24. Kessels, H. W., Nguyen, L.N., Nabavi, S., & Malinow, R. (2010). The prion protein as a receptor for amyloid-b. Nature 466, E3-E5.
  25. Knopman, D.S., DeKosky, S.T., Cummings, J.L., Chui, H., Corey-Bloom, J., Relkin, N., Small, G.W., Miller, B., & Stevens, J.C. (2001). Practice parameter, diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56, 1143-1153.
  26. Koh, J.Y., Yang, L.L., & Cotman, C.W. (1990). β-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 533, 315-320
  27. Lee, H.G., Perry, G., Moreira, P.I., Garrett, M.R., Liu, Q., & Zhu, X.W. (2005). Tau phosphorylation in Alzheimer’s disease, pathogen or protector? Trends in Molecular Medicine, 11, 164-169
  28. Mandybur, T.I. (1975). The incidence of cerebral amyloid angiopathy in Alzheimer’s disease. Neurology,25, 120-126
  29. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245-4249
  30. Meda, L., Cassatella, M.A., Szendrei, G.I., Otvo, L.Jr., Baron, P., Villalba, M., Ferari, D., & Rossi, F. (1995). Activation of microglia cells by beta-amyloid protein and interferon-gamma. Nature, 374, 647-650
  31. Mirra, S.S., Heyman, A., McKeel, D., Sumi, S.M., Crain, B.J., Brownlee, L.M., Vogel, F.S., Hughes, J.P., van Belle, G., & Berg, L. (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology,41, 479-486
  32. Mondragón-Rodríguez, S., Basurto-Islas, G., Lee, H.G., Perry, G., Zhu, X., Castellani, R.J., & Smith, M.A. (2010). Causes versus effects, the increasing complexities of Alzheimer’s disease pathogenesis. Expert Review of Neurotherapeutics, 10, 683-691
  33. Montine, T.J., & Larson, E.B. (2009). Late-life dementias, does this unyielding global challenge require a broader view? Jama, 302, 2593-2594
  34. Montine, T.J., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., Mirra, S.S., Nelson, P.T., Schneider, J.A., Thal, D.R., Trojanowski, J.Q., Vinters, H.V., & Hyman, B.T. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease, a practical approach. Acta Neuropathologica, 123, 1-11.
  35. Nagy, Z., Yilmazer-Hanke, D.M., Braak, H., Braak, E., Schultz, C., & Hanke, J. (1998). Assessment of the pathological stages of Alzheimer’s disease in thin paraffin sections, a comparative study. Dementia and Geriatric Cognitive Disorders, 9, 140-144
  36. Nelson, P.T., Schmitt, F.A., Lin, Y., Abner, E.L., Jicha, G.A., Patel, E., Thomason, P.C., Neltner, J.H., Smith, C.D., Santacruz, K.S., Sonnen, J.A., Poon, L.W., Gearing, M., Green, R.C., Woodard, J.L., Van Eldik, L.J., & Kryscio, R.J. (2011). Hippocampal sclerosis in advanced age, clinical and pathological features. Brain, 134, 1506-1518
  37. Neto, M.R. (2002). Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging. International Psychogeriatrics, 14, 59-72.
  38. Puzzo, D., Vitolo, O., Trinchese, F., Jacob, J.P., Palmeri, A., & Arancio, O. (2005). Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. Journal of Neuroscience, 25, 6887-6897.
  39. Querfurth, H.W., & La Ferla, F.M. (2010). Alzheimer’s disease. The New England Journal of Medicine, 36, 329-344.
  40. Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58, 1615-1621
  41. Ravaglia, G., Forti, P., Maioli, F., Sacchetti, L., Mariani, E., Nativio, V., Talerico, T., Vettori, C., & Macini, P.L. (2002). Education, occupation, and prevalence of dementia, findings from the Conselice study. Dementia and Geriatric Cognitive Disorders, 14, 90-100.
  42. Riedel-Heller, S.G., Busse, A., Aurich, C., Matschinger, H., & Angermeyer, M. C. (2001). Incidence of dementia according to DSM-III-R and ICD-10, results of the Leipzig Longitudinal Study of the Aged (LEILA75+), Part 2. The British Journal of Psychiatry, 179, 255-260
  43. Roth, M., Tomlinson, B.E., & Blessed, G. (1967). The relationship between quantitative measures of dementia and of degenerative changes in the cerebral grey matter of elderly subjects. Proc R Soc Med., 60, 254-60
  44. Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221, 555-563.
  45. Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J.F., Bruni, A.C., Montesi, M.P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R.J., Wasco, W., Da Silva, H. A., Haines, J.L., Perkicak-Vance, M.A., Tanzi, R.E., Roses, A.D., Fraser, P. E., Rommens, J.M., & St George-Hyslop, P.H. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754-760.
  46. Sonnen, J.A., Santa Cruz, K., Hemmy, L.S., Woltjer, R., Leverenz, J.B., Montine, K.S., Jack, C.R., Kaye J., Lim, K., Larson, E.B., White, L., & Montine, T.J. (2011). Ecology of the aging human brain. Archives of Neurology, 68, 1049- 1056
  47. Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K., & Kling, A. (1986). Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. The New England Journal of Medicine, 315, 1241-1245.
  48. Tanzi, R.E., Moir, R.D., & Wagner, S.L. (2004). Clearance of Alzheimer’s Abeta peptide, the many roads to perdition. Neuron., 43, 605-608
  49. Terry, R.D., Masliah, E., & Salmon, D.P. (1991). Physical basis of cognitive alterations in Alzheimer’s disease, synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30, 572-580.
  50. Vossel, K.A., Zhang, K., Brodbeck, J., Daub, A.C., Sharma, P., Finkbeiner, S., Cui, B., & Mucke, L. (2010). Tau reduction prevents Abeta-induced defects in axonal transport. Science, 330, 198.
  51. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Kulln, W.K., Anwyl, R., Wolfe, M.S, Rowan, M.J., & Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539.
  52. Wei, W., Nguyen, L.N., Kessels, H.W., Hagiwara, H., Sisodia, S., & Malinow, R. (2010). Amyloid b from axons and dendrites reduces local spine number and plasticity. Nature Neuroscience, 13, 190-196
  53. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., & Delon, M.R. (1982). Alzheimer’s disease and senile dementia, loss of neurons in the basal forebrain. Science, 215, 1237-1239
  54. Wilson, R.S., Leurgans, S.E., Boyle, P.A., Schneider, J.A., & Bennett, D.A. (2010). Neurodegenerative basis of age-related cognitive decline. Neurology, 75, 1070-1078
  55. Yiannopoulou, K.G., & Papageorgiou, S.G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6, 19-33.
  56. Zhang, Y., He J.S., Wang, X., Wang, J., Bao, F.X., Pang, S.Y., Yin, F., Hu, H.G., Peng, X.L., Sun, W.M., Zheng, Y.P., Hou, L.L., & Hong, T. (2011). Administration of amyloid-β42 oligomer-specific monoclonal antibody improved memory performance in SAMP8 mice. Journal of Alzheimer's Disease, 23, 551- 561
  57. Zlokovic, B. V. (2004). Clearing amyloid through the blood-brain barrier. Journal of Neurochemistry, 89, 807-811.
  58. Zlokovic, B.V. (2005). Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends in Neuroscience, 28, 202-208.

Antonio Guaita, Correlati neurobiologici nell’anziano con malattia di alzheimer e altre demenze in "RICERCHE DI PSICOLOGIA " 2-3/2012, pp 389-406, DOI: 10.3280/RIP2012-002016