The numbers don’t fit: a problem for reliabilism

Journal title EPISTEMOLOGIA
Author/s Jan-Hendrik Heinrichs
Publishing Year 2014 Issue 2014/1
Language Italian Pages 10 P. 96-105 File size 579 KB
DOI 10.3280/EPIS2014-001006
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

I numeri non quadrano: un problema per l’affidabilismo. Le lunghe sequenze di giustificazioni rappresentano un problema per l’affidabilismo. La teoria della giustificazione fornita dall’affidabilismo basato su processi affidabili consente d’estendere in modo poco plausibile il significato di "credenza giustificata". Secondo la teoria affidabilistica basata su processi affidabili, è possibile che un processo cognitivo di giustificazione abbia una probabilità arbitrariamente bassa di aver successo, mentre una credenza giustificata abbia una probabilità arbitrariamente bassa d’esser vera. Questo risultato víola sia gli scopi dell’affidabilismo sia i nostri standard ordinari di giustificazione.

Keywords: Giustificazione, affidabilismo, problema della concatenazione, probabilità.

  1. Chi M.T.H., Klahr D. (1975). Span and Rate of Apprehension in Children and Adults, Journal of Experimental Child Psychology, 19(3), pp. 434-439.
  2. Comesana J. (2009). What lottery problem for reliabilism?, Pacific Philosophical Quarterly, 90(1), pp. 1-20.
  3. Goldman A.I. (1979). What Is Justified Belief?. In Goldman A.I., Liaisons: Philosophy Meets the Cognitive and Social Sciences, Cambridge (Mass.), MIT Press, pp. 105-126.
  4. Kaufman E.L., Lord M.W., Reese T.W., Volkmann J. (1949). The discrimination of visual number, American Journal of Psychology, 62(4), pp. 498-525.
  5. Leplin J. (2009). A Theory of Epistemic Justification, Dordrecht, Springer.
  6. Reys R.E., Rybolt J.F., Bestgen B.J., Wyatt J.W. (1982). Processes Used by Good Computational Estimators, Journal for Research in Mathematics Education, 13(3), pp. 183-201.
  7. Trick L.M. (2008). More than superstition: Differential effects of featural heterogeneity and change on subitizing and counting, Perception & Psychophysics, 70(5), pp. 743-760. Tversky A., Kahneman D. (1974). Judgment under Uncertainty: Heuristics and Biases, Science, New Series, 185(4157), pp. 1124-1131.
  8. Vetter P., Butterworth B., Bahrami B. (2008). Modulating Attentional Load Affects Numerosity Estimation: Evidence against a Pre-Attentive Subitizing Mechanism, PLoS ONE, 3(9), p. e3269.
  9. Wallis C. (1994). Truth-ratios, process, task, and knowledge, Synthese, 98(2), pp. 243-269.

Jan-Hendrik Heinrichs, The numbers don’t fit: a problem for reliabilism in "EPISTEMOLOGIA" 1/2014, pp 96-105, DOI: 10.3280/EPIS2014-001006