The effect of cortical non-invasive stimulation (tdcs) in healthy ageing. Eeg and behavioural correlates

Journal title RICERCHE DI PSICOLOGIA
Author/s Michela Balconi, Francesca Pala, Davide Crivelli
Publishing Year 2016 Issue 2016/1
Language Italian Pages 18 P. 45-62 File size 90 KB
DOI 10.3280/RIP2016-001004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

According to the active and healthy ageing theoretical framework, physiological ageing is a dynamic process characterized even by opportunities for maintaining and strengthening cognitive and affective-social skills. Empowerment by neuromodulation protocols may then act as useful tools to contrast physiological cognitive decline and potential pathological development. Moving from evidences on the primary role of prefrontal neural structures and prefrontal executive functions in the ageing process, we devised and tested a novel neuromodulation empowerment protocol using a non-invasive brain stimulation technique (tDCS). The integrated comparison of psychometric and electrophysiological (event-related potentials - ERP) outcome measures between the experimental and control groups pointed out that the former presented better performances at tests on executive functions and enhanced electrophysiological responses associated to attention control (N200). Such effects seem to be partially maintained even at a follow-up assessment, and that suggests interesting practical implications for the inclusion of neuromodulation techniques in prevention and early intervention projects.

Keywords: Aging, plasticity, tDCS, prefrontal cortex, empowerment, neuromodulation

  1. Andrews, S.C., Hoy, K.E., Enticott, P.G., Daskalakis, Z.J., & Fitzgerald, P.B. (2011). Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation, 4(2), 84–89. DOI: 10.1016/j.brs.2010.06.004
  2. Antonietti, A., Balconi, M., Catellani, P., & Marchetti, A. (2014). Empowering Skills for an Active Ageing and Healthy Living. In G. Riva, P. Ajmone
  3. Marsan, & C. Grassi (Eds.), Active Aging and Healthy Living (pp.157–171). Amsterdam: IOS Press. DOI: 10.3233/978-1-61499-425-1-157
  4. Balconi, M., Crivelli, D., Cobelli, C., Finocchiaro, R., & Canavesio, Y. (2014). Potenziare il profilo cognitivo dell’anziano sano tramite interventi computerizzati individualizzati e neuromodulazione: evidenze preliminari. In Atti del VII Convegno Nazionale di Psicologia dell’Invecchiamento (p.57). Torino.
  5. Balconi, M., Inzaghi, M.G., Canavesio, Y., Crivelli, D., Arangio, R., Antonietti, A., & Marchetti, A. (2013). Strumenti di valutazione e di potenziamento cognitivo e neuropsicologico nell’aging fisiologico. Predisposizione di un protocollo di ricerca. In Atti del VI Convegno Nazionale di Psicologia dell’Invecchiamento (p.38). Orvieto.
  6. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100. DOI: 10.1037/0882-7974.17.1.85
  7. Cabeza, R., & Dennis, N.A. (2013). Frontal lobes and aging. In D.T. Stuss & R.T. Knight (Eds.), Principles of Frontal Lobe Function (2nd ed., pp. 628–652).
  8. New York, NY: Oxford University Press. Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2002). Una versione abbreviata del test di Stroop: dati normativi nella popolazione italiana. Nuova Rivista Di Neurologia, 12(4), 111–115.
  9. Carlesimo, G.A., Caltagirone, C., & Gainotti, G. (1996). The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. European Neurology, 36(6), 378–384. DOI: 10.1159/000117297
  10. Chatrian, G.E., Lettich, E., & Nelson, P.L. (1988). Modified nomenclature for the “10%” Electrode System. Journal of Clinical Neurophysiology, 5(2), 183–186.
  11. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J.K., Holyoak, K.J., & Gabrieli, J.D E. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14(5), 1136–1149. DOI: 10.1006/nimg.2001.0922
  12. Crivelli, D., Canavesio, Y., Pala, F., Finocchiaro, R., Cobelli, C., Lecci, G., & Balconi, M. (2015). Empowering executive functions by neuromodulation (tDCS) in healthy elderly: psychometric and EEG evidences. In Proceedings of the 15th European Congress on Clinical Neurophysiology (p. 286). Brno.
  13. Crivelli, D., Canavesio, Y., Pala, F., Finocchiaro, R., Lecci, G., Inzaghi, M.G., & Balconi, M. (2015). Cognitive and electrophysiological empowerment in healthy aging: clinical and EEG evidences. In The 14th European Congress of Psychology. Milano.
  14. Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., & Cabeza, R. (2008). Qué PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(May), 1201–1209. DOI: 10.1093/cercor/bhm155
  15. De Beni, R., & Borella, E. (2015). Psicologia dell’ invecchiamento e della longevità. Bologna: il Mulino.
  16. Double, K.L., Halliday, G.M., Kril, J.J., Harasty, J.A., Cullen, K., Brooks, W.S., Broe, G.A. (1996). Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiology of Aging, 17(4), 513–521. DOI: 10.1016/S0197-4580(96)00005-X
  17. Fernàndez-Ballesteros, R. (2008). Active aging. The contribution of psychology. Boston: Hogrefe.
  18. Fertonani, A., Rosini, S., Cotelli, M., Rossini, P.M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioural Brain Research, 208(2), 311–318. DOI: 10.1016/j.bbr.2009.10.030
  19. Friedman, D. (2012). The Components of Aging. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford Handbook of Event-Related Potential Components (pp. 513–535). New York: Oxford University Press. DOI: 10.1093/oxfordhb/9780195374148.013.0243
  20. Gajewski, P.D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6(May), 130. DOI: 10.3389/fnhum.2012.00130.Gajewski,P.D.,&Falkenstein,M.(2015).Long-termhabitualphysicalactivityisassociatedwithlowerdistractibilityinaStroopinterferencetaskinaging:behavioralandERPevidence.BrainandCognition,98,87–101.DOI:10.1016/j.bandc.2015.06.004
  21. Giovagnoli, A.R., Del Pesce, M., Mascheroni, S., Simoncelli, M., Laiacona, M., & Capitani, E. (1996). Trail making test: normative values from 287 normal adult controls. Italian Journal of Neurological Sciences, 17(4), 305–309. DOI: 10.1007/BF01997792
  22. Gutchess, A. (2014). Plasticity of the aging brain: new directions in cognitive neuroscience. Science, 346(6209), 579–582. DOI: 10.1126/science.1254604
  23. Harty, S., Robertson, I.H., Miniussi, C., Sheehy, O.C., Devine, C. A., McCreery, S., & O’Connell, R.G. (2014). Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. The Journal of Neuroscience, 34(10), 3646–3652. DOI: 10.1523/JNEUROSCI.5308-13.2014
  24. Howe, A.S. (2014). Meta-analysis of the endogenous N200 latency event-related potential subcomponent in patients with Alzheimer’s disease and mild cognitive impairment. Clinical Neurophysiology, 125(6), 1145–1151. DOI: 10.1016/j.clinph.2013.10.019
  25. Isella, V., Villa, M.L., & Appollonio, I.M. (2002). Screening and quantification of depression in mild-to-moderate dementia through the GDS short forms. Clinical Gerontologist, 24(3-4), 115–125. DOI: 10.1300/J018v24n03_10
  26. ISTAT (2015). Popolazione e famiglie. In Annuario Statistico Italiano 2015 (pp.69–108). Roma: Istituto nazionale di statistica.
  27. Kennedy, K.M., & Raz, N. (2009). Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 1297, 41–56. DOI: 10.1016/j.brainres.2009.08.058
  28. Laicardi, C., Pezzuti, L., & Sberna, S. (1998). La valutazione dell’autonomia strumentale quotidiana dell’anziano (IADL): validazione di una nuova modalità di punteggio. Ricerche Di Psicologia, 22(1), 89–101.
  29. Magni, E., Binetti, G., Bianchetti, A., Rozzini, R., & Trabucchi, M. (1996). Mini-Mental State Examination: a normative study in Italian elderly population. European Journal of Neurology, 3(3), 198–202. DOI: 10.1111/j.1468-1331.1996.tb00423.x
  30. Martin, M., Clare, L., Altgassen, A.M., Cameron, M.H., & Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database of Systematic Reviews, (1), CD006220. DOI: 10.1002/14651858.CD006220.pub2
  31. Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial Direct Current Stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 12470–12478. DOI: 10.1523/JNEUROSCI.5743-12.2013.Meinzer,M.,Lindenberg,R.,Sieg,M.M.,Nachtigall,L.,Ulm,L.,&Floel,A.(2014).Transcranialdirectcurrentstimulationoftheprimarymotorcorteximprovesword-retrievalinolderadults.FrontiersinAgingNeuroscience,6(September),253.DOI:10.3389/fnagi.2014.00253
  32. Moretti, F., De Ronchi, D., Palmer, K., Forlani, C., Morini, V., Ferrari, B., Atti, A.R. (2013). Prevalence and characteristics of mild cognitive impairment in the general population. Data from an Italian population-based study: the Faenza Project. Aging & Mental Health, 17(3), 267–275. DOI: 10.1080/13607863.2012.732034
  33. Nishi, H., Sawamoto, N., Namiki, C., Yoshida, H., Thuy, D.H.D., Ishizu, K., Fukuyama, H. (2010). Correlation between cognitive deficits and glucose hypometabolism
  34. in mild cognitive impairment. Journal of Neuroimaging, 20(1), 29–36. DOI: 10.1111/j.1552-6569.2008.00328.x
  35. Norris, S., Degabriele, R., & Lagopoulos, J. (2010). Recommendations for the use of tDCS in clinical research. Acta Neuropsychiatrica, 22(4), 197–198. DOI: 10.1111/j.1601-5215.2010.00480.x
  36. Novelli, G., Papagno, C., Capitani, E., Laiacona, M., Vallar, G., & Cappa, S.F. (1986). Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Archivio Di Psicologia Neurologia E Psichiatria, 47(4), 477–506.
  37. Nyenhuis, D.L., & Garron, D.C. (1997). Psychometric considerations when measuring cognitive decline in Alzheimer’s disease. Neuroepidemiology, 16(4), 185–190.
  38. Park, D.C., & Reuter-Lorenz, P.A. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. DOI: 10.1146/annurev.psych.59.103006.093656
  39. Park, S.H., Seo, J.H., Kim, Y.H., & Ko, M.H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport, 25, 122–126. DOI: 10.1097/WNR.0000000000000080
  40. Paulus, W. (2003). Transcranial direct current stimulation (tDCS). Supplements to Clinical Neurophysiology, 56, 249–254. DOI: 10.1016/S1567-424X(09)70229-6
  41. Petersen, R.C., & Negash, S. (2008). Mild cognitive impairment: an overview. CNS Spectrums, 13(1), 45–53. DOI: 10.1017/S1092852900016151
  42. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4-6), 208–214. DOI: 10.1016/j.brainresbull.2007.01.004
  43. Ravaglia, G., Forti, P., Montesi, F., Lucicesare, A., Pisacane, N., Rietti, E., Mecocci, P. (2008). Mild Cognitive Impairment: epidemiology and dementia risk in an elderly Italian population. Journal of the American Geriatrics Society, 56(1), 51–58. DOI: 10.1111/j.1532-5415.2007.01503.x.
  44. Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K.M., Williamson, A., & Acker, J.D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of Aging, 25, 377–396. DOI: 10.1016/S0197-4580(03)00118-0
  45. Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., Acker, J.D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(November), 1676–1689. DOI: 10.1093/cercor/bhi044
  46. Reuter-Lorenz, P.A., & Cappell, K.A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182. DOI: 10.1111/j.1467-8721.2008.00570.x
  47. Rosen, A.C., Prull, M.W., O’Hara, R., Race, E.A., Desmond, J.E., Glover, G.H., Gabrieli, J.D.E. (2002). Variable effects of aging on frontal lobe contributions to memory. Neuroreport, 13(18), 2425–2428. DOI: 10.1097/00001756-200212200-00010
  48. Samson, D., Connolly, C., & Humphreys, G.W. (2007). When “happy” means “sad”: Neuropsychological evidence for the right prefrontal cortex contribution to executive semantic processing. Neuropsychologia, 45(5), 896–904. DOI: 10.1016/j.neuropsychologia.2006.08.023
  49. Sandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L.G., & Cotelli, M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6(October), 289. DOI: 10.3389/fnagi.2014.00289
  50. Schulz, R., Gerloff, C., & Hummel, F.C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 64, 579–587. DOI: 10.1016/j.-neuropharm.2012.05.016
  51. Solfrizzi, V., Panza, F., Colacicco, A.M., D’Introno, A., Capurso, C., Torres, F., Italian Longitudinal Study on Aging Working Group. (2004). Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology, 63(10), 1882–91. DOI: 10.1212/01.WNL.0000144281.38555.E3
  52. Spinnler, H., & Tognoni, G. (1987). Standardizzazione e taratura italiana di test neuropsicologici. The Italian Journal of Neurological Sciences, Suppl 8(6), 1–120.
  53. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.
  54. Turner, G.R., & Spreng, R.N. (2012). Executive functions and neurocognitive aging: Dissociable patterns of brain activity. Neurobiology of Aging, 33(4), 826.e1–826.e13. DOI: 10.1016/j.neurobiolaging.2011.06.005
  55. Van Ettinger-Veenstra, H., Ragnehed, M., McAllister, A., Lundberg, P., & Engström, M. (2012). Right-hemispheric cortical contributions to language ability in healthy adults. Brain and Language, 120(3), 395–400. DOI: 10.1016/j.-bandl.2011.10.002.
  56. West, R.L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272–292. DOI: 10.1037/0033-2909.120.2.272
  57. Zanetti, M., Ballabio, C., Abbate, C., Cutaia, C., Vergani, C., & Bergamaschini, L. (2006). Mild Cognitive Impairment subtypes and vascular dementia in community-dwelling elderly people: a 3-year follow-up study. Journal of the American Geriatrics Society, 54(4), 580–586. DOI: 10.1111/j.1532-5415.2006.00658.x

  • Neurocognitive Empowerment in Healthy Aging: a Pilot Study on the Effect of Non-invasive Brain Stimulation on Executive Functions Michela Balconi, Laura Angioletti, Federico Cassioli, Davide Crivelli, in Journal of Cognitive Enhancement /2021 pp.343
    DOI: 10.1007/s41465-020-00203-2

Michela Balconi, Francesca Pala, Davide Crivelli, Effetto della neuromodulazione corticale (tdcs) nell’healthy ageing. Correlati eeg e comportamentali in "RICERCHE DI PSICOLOGIA " 1/2016, pp 45-62, DOI: 10.3280/RIP2016-001004