Biowaste in a circular bioeconomy in Mediterranean area: A case study of compost and vermicompost as growing substrates alternative to peat

Journal title RIVISTA DI STUDI SULLA SOSTENIBILITA'
Author/s Carlo Greco, Alessandro Agnello, Giulia La Placa, Michele Massimo Mammano, Kestutis Navickas
Publishing Year 2020 Issue 2019/2 Suppl.
Language English Pages 18 P. 345-362 File size 194 KB
DOI 10.3280/RISS2019-002-S1022
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

European policies are advocating a transition toward circular bio-economy, an economy aiming at reducing the dependence from fossil-based resources, limiting greenhouse gas emissions and environmental impacts. The aim of this paper is to assess the potential for circularity for bio-waste and related by-products, to highlight the role of compost and vermicompost in the circular bioeconomy and their use in the agricultural sector. Three different substrates were tested in the soilless cultivation of Salvia officinalis, a Mediterranean nutraceutical and healthy plant: vermicompost (40%), compost (40%) and peat (100%). The average values of the main biometric parameters were calculated and compared. Compost and vermicompost can be considered as sustainable peat alternative growing substrates.

Keywords: Sustainable bio-waste management, nutraceutical and healthy plants, circular bioeconomy, sustainable peat alternative growing media, compost, vermicompost.

  1. Abo-Baker A.A. and Mostafa G.G. (2011). Effect of bioand chemical fertilizers on growth, sepals yield and chemical composition of Hibiscus sabdariffa at new reclaimed soil of south valley area. Asian Journal of Crop Science, 3(1): 16-25.
  2. Altieri R., Esposito A. and Baruzzi G. (2010). Use of olive mill waste mix as peat surrogate in substrate for strawberry soilless cultivation. Int. Biodeterior. Biodegradation, 64: 670-675.
  3. Arancon N.Q., Edwards C.A., Bierman P., Welch C. and Metzger J.D. (2004). Influences of vermicomposts on field strawberries. 1. Effects on growth and yields. Bioresour.Technol., 93: 145-153.
  4. Attard G., Comparetti A., Febo P., Greco C., Mammano M. and Orlando S. (2017). Case study of potential production of Renewable Energy Sources (RES) from livestock wastes in Mediterranean islands. Chemical Engineering Transactions, 58(58): 553-558.
  5. Benetto E., Gericke K. and Guiton M. (2018). Designing Sustainable Technologies, Products and Policies - From Science to Innovation. DOI: 10.1007/978-3-319-66981-6
  6. Bocken N.M.P., Olivetti E.A, Cullen J.M., Potting J. and Lifset R. (2017). Taking the Circularity to the Next Level: A Special Issue on the Circular Economy. J. Ind. Ecol., 21: 476-482.
  7. Carmona E., Moreno M.T., Avilés M. and Ordovás J. (2012). Use of grape marc compost as substrate for vegetable seedlings. Sci. Hortic., 137: 69-74.
  8. Chapman S.C. and Barreto H. J. (1997). Using a chlorophyll meter to estimate spe leaf nitrogen of tropical maize during vegetative growth. Agron J., 89: 557-562.
  9. Comparetti A., Febo P., Greco C. and Orlando S. (2011). First tests of a pyrolysis prototype for biochar production. 22-24 September 2011, Atti convegno AIIA, Belgirate (in Italian).
  10. Comparetti A., Greco C., Navickas K. and Venslauskas K. (2012). Evaluation of potential biogas production in Sicily. Proceedings of the 11th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 24-25 May 2012: 555-559.
  11. Comparetti A., Febo P., Greco C. and Orlando O. (2013a). Current state and future of biogas and digestate production. Bulgarian Journal of Agricultural Science, 19(1): 1-14.
  12. Comparetti A., Febo P., Greco C., Navickas K., Nekrosius A., Orlando S. and Venslauskas K. (2013b). Sicilian potential biogas production. X Convegno Nazionale di Ingegneria Agraria, Viterbo, 8-12 September 2013. Journal of Agricultural Engineering, XLIV(s2): e103: 522-525.
  13. Comparetti A., Febo P., Greco C., Navickas K., Nekrosius A., Orlando S. and Venslauskas K. (2013c). Biogas yield from Sicilian kitchen waste and cheese whey. X Convegno Nazionale di Ingegneria Agraria, Viterbo, 8-12 September 2013.
  14. Journal of Agricultural Engineering, XLIV(s2): e106: 535-538.
  15. Comparetti A., Febo P., Greco C., Navickas K., Nekrosius A., Orlando S. and Venslauskas K. (2014). Assessment of organic waste management methods through energy balance. American Journal of Applied Sciences, 11(9): 1631-1644. Comparetti A., Febo P., Greco C. and Orlando S., (2015). Italian Potential Biogas and Biomethane Production from OFMSW. IV International Conference Ragusa SHWA on “Safety, Health and Welfare in Agriculture, Agro- food and Forestry Systems”, Lodi, Italy, 8-11 September 2015: 206-215.
  16. Comparetti A., Febo P., Greco C., Mammano M.M. and Orlando S. (2017a). Potential production of biogas from prinkly pear (Opuntia ficus-indica L.) in Sicilian uncultivated areas. Chemical Engineering Transactions, 58: 559-564.
  17. Comparetti A., Febo P., Greco C., Mammano M.M. and Orlando S. (2017b). Sicilian potential biogas production from Citrus industry by-product. Proceedings of 11th International AIIA (Italian Association of Agricultural Engineering), July 5-8, 2016 Bari, Italy: 169-173.
  18. Cruz-Silva C.T.A., Nobrega L.H.P., Dellagostin S.M. and Silva C.F.G. (2016). Salvia officinalis L. coverage on plants development. Rev. Bras. Pl. Med., Campinas, 18(2): 488-493.
  19. Eudoxic G.D. and Alexander I.A. (2011). Spent mushroom as a transplant media replacement for commercial peat in tomato seedling production. J. Agric. Sci., 3: 1916-9752.
  20. European Commission (EC) (2018). Measuring progress towards circular economy in the European Union – Key indicators for a monitoring framework, SWD (2018) 17 final.
  21. European Commission (2015). Closing loop – An EU action plan Circular Economy, Communication from the Commission to the European parliament, the Council, the European economic and social committee and the committee of the regions, C.O.M. 0614, 2015.
  22. European Compost Network – ECN (2019). -- Web: www.compostnetwork.info. Eurostat. Main tables - Eurostat: Municipal waste generation and treatment, by type of treatment method. 2017. -- [Online] Available: http://ec.europa.eu/eurostat/web/environment/waste/main-tables [accessed August 21, 2017].
  23. Fava F., Totaro G., Diels L., Reis M., Duarte J., Carioca O.B., Ctor, H., Poggi-Varaldo M. and Ferreira B.S. (2015). Biowaste biorefinery in Europe: opportunities and research and development needs. N. Biotechnol., 32.
  24. Food and Agriculture Organization of the United Nations (FAO) (2011). Global food losses and food waste – Extent, causes and prevention.
  25. Forge T., Kenney E., Hashimoto N., Neilsen D. and Zebarth B. (2014). Compost and poultry manure as preplant soil amendments for red raspberry: Comparative effects on root lesion nematodes, soil quality and risk of nitrate leaching. Agric. Ecosyst. Environ., 223: 48-58.
  26. Golijan J. (2016). Organska proizvodnja lekovitog i aromatičnog bilja u Republici Srbiji. Lekovite sirovine, 36(36): 75-83.
  27. Golijan J. and Marković D. (2018). Importance of Using Compost and Bacterial Biofuels in the Organic Production of Medicinal and Aromatic Plants. Agroknowledge Journal, 19(3): 211-219.
  28. Hait S. and Tare V. (2011). Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Manage., 31: 502-511.
  29. Jayasinghe G.Y., Arachchi I.D.L. and Tokashiki Y. (2010). Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative. Resour. Conserv. Recycl., 54: 1412-1418.
  30. Khomami A.M. and Moharam M.G. (2014). Growth of dieffenbachia amoena ‘Tropic Snow’ in growing media containing sugarcane bagasse and sawdust vermicompost. J. Ornam. Plants., 4: 61-67.
  31. Lazcano C., Arnold J., Tato A., Zaller G.J. and Domínguez J. (2009). Compost and ver-micompost as nursery pot components: effects on tomato plant growth andmorphology. Span. J. Agric. Res., 7: 944-951.
  32. Lin C.S.K., Pfaltzgraff L.A., Herrero-Davila L., Mubofu E.B., Abderrahim S., Clark J.H., Koutinas A.A., Kopsahelis N., Stamatelatou K., Dickson F., Thankappan S., Mohamed Z., Brocklesby R. and Luque R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci., 6: 426-464.
  33. McDonough W. and Braungart M. (2002). Cradle to cradle: remaking the way we make things. North Point Press.
  34. Méndez A., Cárdenas-Aguiar E., Paz-Ferreiro J., Plaza C. and Gascó G. (2017). The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic., 33: 40-51.
  35. Minelli A. (2004). Mountain peat bogs, relics of biodiversity in acid waters. Habitat notebooks. Friulan Museum of Natural History. Udine
  36. Mirabella N., Castellani V. and Sala S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65: 28-41.
  37. Mirecki N., Wehinger T. and Jaklič M. (2011). Priručnik za organsku proizvodnju. Food and Agriculture Organization of the United Nations (FAO). Biotehnički fakultet Podgorica.
  38. OECD Science, Technology and Industry (2018). Realising the circular bioeconomy. Oecd Science Technology and Industry – Policy Papers, November, No. 60.
  39. Orlando S., Greco C., Tuttolomondo T., Leto C., Cammalleri I. and La Bella S. (2017). Identification of Energy Hubs for the Exploitation of Residual Biomass in an Area of Western Sicily. In: EUBCE 2017 Online Conference Proceedings, Firenze: ETA srl, pp. 64-69.
  40. Poggi-Varaldo H.M., Munoz-Paez K.M., Escamilla-Alvarado C., Robledo-Narváez P.N., Ponce-Noyola M.T., Graciano C.-C. Ríos-Leal E., Galíndez-Mayer J., Estrada-Vázquez C., Ortega-Clemente A. and Rinderknecht-Seijas N.F. (2014). Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: A review. Waste Manag. Res., 32: 353-365.
  41. RobecoSAM (2012). Tackling Resource Efficiency Challenges. Zurich:
  42. RobecoSAM. Siebert S., Gilbert J. and Clarity C. (2018). Guidelines – Specification for the Use of Quality Compost in Growing Media. European Quality Assurance Scheme ECNQAS. European Compost network ECN e.V. -- www.compostnetwork.info.
  43. Siebert S. (2016). Bio-Waste Recycling in Europe Against the Backdrop of the Circular Economy Package, 161024 ECN Biowaste Recycling in Europe, 2016. -- http://www.compostnetwork.info/download/bio-waste-recycling-europe-backdrop-circular-economy-package/ (Accessed 18.05.2017).
  44. Tiquia S.M. (2010). Reduction of compost phytotoxicity during the process of decomposition. Chemosphere, 79: 506-512.
  45. Tonini D., Martinez-Sanchez V. and Astrup T.F. (2013). Material resources, energy, and nutrient recovery from waste: Are waste refineries the solution for the future?. Environ. Sci. Technol., 47: 8962-8969.
  46. Vea E. B., Romeoa D. and Thomsena M. (2018). Biowaste valorisation in a future circular bioeconomy. Procedia CIRP, 69: 591-596.
  47. Veličković M., Golijan J. and Popović A. (2016). Biodiversity and organic agriculture. Acta Agriculturae Serbica, 21(42): 123-134.
  48. Veselý V., Gutt J.P., Baerenhof H., Varga T., Rideg D., King A., Weld C., Matolcsi E., Black B., Hallin J., Skjævestad Strand M.P., Milenković K., Prica M., Peña C., Lo Presti F., Berkay Atik A., Gonul H., Lee A., Kibbler N. and Cade A. (2016). Living and learning on organic farms. EU Erasmus + Strategic Partnership programme. -- http://lloof.eu/public/LLOOF_Guide_rs.pdf.
  49. White J.W. and Montes R.C. (2005). Relationships between chloropyll meter readings and leaf chloropyll concentration, N status and crop yieald: A rewiev. Procedings Agronomy Society of New Zealand, 23: 1-9.
  50. Yadav A. and Garg V.K. (2011). Industrial wastes and sludges management by vermicomposting. Rev. Environ. Sci. Biotechnol., 10: 243e276.
  51. Yazid N.A., Barrena R., Komilis D. and Sánchez A. (2017). Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustain., 9: 1-28.
  52. Zaller J.G. (2007). Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. Eur. J. Soil-Biol. 43, S332–S336.
  53. Zheljazkov V.D. and Warman P.R. (2004). Source-separated municipal solid waste compost application to Swiss chard and basil. Journal of environmental quality, 33(2): 542-552.
  54. Zheljazkov V.D., Stratton G.W., Pincock J., Butler S., Jeliazkova E.A., Nedkov N.K.
  55. and Gerard P.D. (2009). Wool-waste as organic nutrient source for containergrownplants. Waste Manage., 29: 2160-2164.
  56. Spitale D. (2012). The bogs as environments of exceptional naturalistic value. Adamello Brenta Parco, 16(2)

Carlo Greco, Alessandro Agnello, Giulia La Placa, Michele Massimo Mammano, Kestutis Navickas, Biowaste in a circular bioeconomy in Mediterranean area: A case study of compost and vermicompost as growing substrates alternative to peat in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 2 Suppl./2019, pp 345-362, DOI: 10.3280/RISS2019-002-S1022