Neurophysiology, Neuro-Immune Interactions, and Mechanobiology in Osteopathy in the Cranial Field: An Evidence-Informed Perspective for a Scientifi c Rationale

Journal title PNEI REVIEW
Author/s Alessandro Casini, Nicola Barsotti, Marco Chiera, Christian Lunghi, Mauro Fornari, Diego Lanaro
Publishing Year 2024 Issue 2024/1
Language Italian Pages 14 P. 68-81 File size 1137 KB
DOI 10.3280/PNEI2024-001006
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Osteopathy in the cranial field (OCF) is a distinctive approach within osteopathy that focuses on the manual manipulation of the cranial region. However, the scientific validity of OCF has been questioned due to its association with outdated models. This perspective paper critically examines current knowledge in neurophysiology and mechanobiology to present an evidence-based rationale for OCF. The main findings focus on the tactile stimulation of exocranial receptors, the effects of such stimulation at the endocrinal and systemic levels, and the implications for the management of craniofacial pain-dysfunction syndromes through OCF. By proposing an evidence-based rationale for OCF, this research aims to guide future studies in the field and contribute to the establishment of a more patient-centered and effective therapeutic approach for health and well-being.

Keywords: Osteopathy in the cranial field, Manual therapy, Touch, Mechano- transduction, Trigeminal nerve, Cranial sutures.

  1. McGlone F., Wessberg J., & Olausson H. (2014). Discriminative and affective touch: sensing and feeling. Neuron, 82(4), 737–755.
  2. Abenavoli A., Badi F., Barbieri M., Bianchi M., Biglione G., Dealessi C., Grandini M., Lavazza C., Mapelli L., Milano V., Monti L., Seppia S., Tresoldi M., & Maggiani A. (2020). Cranial osteopathic treatment and stress-related effects on autonomic nervous system measured by salivary markers: A pilot study. Journal of Bodywork and Movement Therapies, 24(4), 215–221.
  3. Balcziak L.K., & Russo A.F. (2022). Dural Immune Cells, CGRP, and Migraine. Frontiers in Neurology, 13, 874193.
  4. Baroni F., Tramontano M., Barsotti N., Chiera M., Lanaro D., & Lunghi C. (2021). Osteopathic structure/function models renovation for a person-centered approach: a narrative review and integrative hypothesis. Journal of Complementary and Integrative Medicine, 20(2), 293–301.
  5. Benatto M.T., Florencio L.L., Carvalho G.F., Dach F., Bigal M.E., Chaves T.C., & Bevilaqua-Grossi D. (2017). Cutaneous allodynia is more frequent in chronic migraine, and its presence and severity seems to be more associated with the duration of the disease. Arquivos de Neuro-Psiquiatria, 75(3), 153–159. DOI: 10.1590/0004
  6. McGlone F., Cerritelli F., Walker S., & Esteves J. (2017). The role of gentle touch in perinatal osteopathic manual therapy. Neuroscience & Biobehavioral Reviews, 72, 1–9.
  7. Cerritelli F., Chiacchiaretta P., Gambi F., Perrucci M.G., Barassi G., Visciano C., Bellomo R.G., Saggini R., & Ferretti A. (2020). Effect of manual approaches with osteopathic modality on brain correlates of interoception: an fMRI study. Scientific Reports, 10(1), 3214.
  8. Cerritelli F., Ginevri L., Messi G., Caprari E., Di Vincenzo M., Renzetti C., Cozzolino V., Barlafante G., Foschi N., & Provinciali L. (2015). Clinical effectiveness of osteopathic treatment in chronic migraine: 3-Armed randomized controlled trial. Complementary Therapies in Medicine, 23(2), 149–156.
  9. Corniani G., & Saal H.P. (2020). Tactile innervation densities across the whole body. Journal of Neurophysiology, 124(4), 1229–1240.
  10. D’Alessandro G., Cerritelli F., & Cortelli P. (2016). Sensitization and Interoception as Key Neurological Concepts in Osteopathy and Other Manual Medicines. Frontiers in Neuroscience, 10, 100.
  11. Degenhardt B.F., Darmani N.A., Johnson J.C., Towns L.C., Rhodes D.C.J., Trinh C., McClanahan B., & DiMarzo V. (2007). Role of osteopathic manipulative treatment in altering pain biomarkers: a pilot study. The Journal of the American Osteopathic Association, 107(9), 387–400.
  12. DeGiorgio C.M., Soss J., Cook I.A., Markovic D., Gornbein J., Murray D., Oviedo S., Gordon S., Corralle-Leyva G., Kealey C.P., & Heck C.N. (2013). Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology, 80(9), 786–791.
  13. Dubin A.E., & Patapoutian A. (2010). Nociceptors: the sensors of the pain pathway. Journal of Clinical Investigation, 120(11), 3760–3772. DOI: 10.1172/JCI4284
  14. Gabutti M., & Draper-Rodi J. (2014). Osteopathic decapitation: Why do we consider the head differently from the rest of the body? New perspectives for an evidenceinformed osteopathic approach to the head. International Journal of Osteopathic Medicine, 17(4), 256–262.
  15. Ginatempo F., De Carli F., Todesco S., Mercante B., Sechi G.P., & Deriu F. (2018). Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults. Experimental Brain Research, 236(11), 2839–2845.
  16. Goadsby P.J., Knight Y.E., Hoskin K.L., & Butler P. (1997). Stimulation of an intracranial trigeminally-innervated structure selectively increases cerebral blood flow. Brain Research, 751(2), 247–252.
  17. Iyengar S., Johnson K.W., Ossipov M.H., & Aurora S.K. (2019). CGRP and the Trigeminal System in Migraine. Headache: The Journal of Head and Face Pain, 59(5), 659–681.
  18. Jara Silva C.E., Joseph A.M., Khatib M., Knafo J., Karas M., Krupa K., Rivera B., Macia A., Madhu B., McMillan M., Burtch J., Quinonez J., Albert T., & Khanna D. (2022). Osteopathic Manipulative Treatment and the Management of Headaches: A Scoping Review. Cureus, 14, e27830.
  19. Katanosaka K., Takatsu S., Mizumura K., Naruse K., & Katanosaka Y. (2018). TRPV2 is required for mechanical nociception and the stretch-evoked response of primary sensory neurons. Scientific Reports, 8(1), 16782.
  20. Klein A.H., Trannyguen M., Joe C.L., Iodi Carstens M., & Carstens E. (2015). Thermosensitive Transient Receptor Potential (TRP) Channel Agonists and Their Role in Mechanical, Thermal and Nociceptive Sensations as Assessed Using Animal Models. Chemosensory Perception, 8(2), 96–108.
  21. 015-9176-9
  22. Kosaras B., Jakubowski M., Kainz V., & Burstein R. (2009). Sensory innervation of the calvarial bones of the mouse. The Journal of Comparative Neurology, 515, 331–348.
  23. Macfarlane R., & Moskowitz M.A. (1995). The Innervation of Pial Blood Vessels and their Role in Cerebrovascular Regulation. In: Caplan L.R. (Ed.), Brain Ischemia. London: Springer London (pp. 247–259).
  24. Mercante B., Enrico P., Floris G., Quartu M., Boi M., Serra M.P., Follesa P., & Deriu F. (2017). Trigeminal nerve stimulation induces Fos immunoreactivity in selected brain regions, increases hippocampal cell proliferation and reduces seizure severity in rats. Neuroscience, 361, 69–80.
  25. Mulcahy J., & Vaughan B. (2014). Sensations Experienced and Patients’Perceptions of Osteopathy in the Cranial Field Treatment. Journal of Evidence-Based Complementary & Alternative Medicine, 19(4), 235–246. DOI: 10.1177/2156587214534263
  26. Noseda R., Melo-Carrillo A., Nir R.-R., Strassman A.M., & Burstein R. (2019). Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. The Journal of Neuroscience, 39(10), 1867–1880. https://doi. org/10.1523/JNEUROSCI.2153-18.2018
  27. Olesen J., Burstein R., Ashina M., & Tfelt-Hansen P. (2009). Origin of pain in migraine: evidence for peripheral sensitisation. The Lancet Neurology, 8(7), 679–690. DOI: 10.1016/S1474-4422(09)70090-
  28. Panneton W.M., & Gan Q. (2020). The Mammalian Diving Response: Inroads to Its Neural Control. Frontiers in Neuroscience, 14, 524.
  29. Pietrobon D., & Moskowitz M.A. (2013). Pathophysiology of Migraine. Annual Review of Physiology, 75(1), 365–391.
  30. Piovesan E., Kowacs P., Tatsui C., Lange M., Ribas L., & Werneck L. (2001). Referred Pain After Painful Stimulation of the Greater Occipital Nerve in Humans: Evidence of Convergence of Cervical Afferences on Trigeminal Nuclei. Cephalalgia, 21(2), 107–109.
  31. Pulous F.E., Cruz-Hernández J.C., Yang C., Kaya Ζ., Paccalet A., Wojtkiewicz G., Capen D., Brown D., Wu J.W., Schloss M.J., Vinegoni C., Richter D., Yamazoe M., Hulsmans M., Momin N., Grune J., Rohde D., McAlpine C.S., Panizzi P., Weissleder R., Kim D.-E., Swirski F.K., Lin C.P., Moskowitz M.A., & Nahrendorf M. (2022). Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nature Neuroscience, 25(5), 567–576.
  32. Roudaut Y., Lonigro A., Coste B., Hao J., Delmas P., & Crest M. (2012). Touch sense: Functional organization and molecular determinants of mechanosensitive receptors. Channels, 6(4), 234–245.
  33. Schoenen J., Vandersmissen B., Jeangette S., Herroelen L., Vandenheede M., Gerard P., & Magis D. (2013). Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial. Neurology, 80(8), 697–704.
  34. Schueler M., Messlinger K., Dux M., Neuhuber W.L., & De R. (2013). Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain, 154(9), 1622–1631.
  35. Schueler M., Neuhuber W.L., De Col R., & Messlinger K. (2014). Innervation of Rat and Human Dura Mater and Pericranial Tissues in the Parieto-Temporal Region by Meningeal Afferents. Headache: The Journal of Head and Face Pain, 54(6), 996–1009.
  36. Shiozawa P., Da Silva M.E., Netto G.T.M., Taiar I., & Cordeiro Q. (2015). Effect of a 10day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: A phase II, sham-controlled, randomized clinical trial. Epilepsy & Behavior, 44, 23–26. https://doi. org/10.1016/j.yebeh.2014.12.024
  37. Smith R., Thayer J.F., Khalsa S.S., & Lane R.D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274–296.
  38. Stovner L.J., Hagen K., Tronvik E., Bruvik Gravdahl G., Burstein R., & Dodick D.W. (2022). FollowTheSutures: Piloting a new way to administer onabotulinumtoxinA for chronic migraine. Cephalalgia, 42(7), 590–597. DOI: 10.1177/0333102421106777
  39. Terrier L., Hadjikhani N., Velut S., Magnain C., Amelot A., Bernard F., Zöllei L., & Destrieux C. (2021). The trigeminal system: The meningovascular complex— A review. Journal of Anatomy, 239(1), 1–11.
  40. Terrier L.-M., Hadjikhani N., & Destrieux C. (2022). The trigeminal pathways. Journal of Neurology, 269(7), 3443–3460.
  41. Tramontano M., Cerritelli F., Piras F., Spanò B., Tamburella F., Piras F., Caltagirone C., & Gili T. (2020). Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sciences, 10(12), 969.
  42. White T.G., Powell K., Shah K.A., Woo H.H., Narayan R.K., & Li C. (2021). Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review. Frontiers in Neuroscience, 15, 649910.
  43. Woo S.-H., Ranade S., Weyer A.D., Dubin A.E., Baba Y., Qiu Z., Petrus M., Miyamoto T., Reddy K., Lumpkin E.A., Stucky C.L., & Patapoutian A. (2014). Piezo2 is required for Merkel-cell mechanotransduction. Nature, 509(7502), 622–626.

Alessandro Casini, Nicola Barsotti, Marco Chiera, Christian Lunghi, Mauro Fornari, Diego Lanaro, Neurofisiologia, interazioni neuro-immunitarie e meccanobiologia nell’osteopatia craniale. Una prospettiva basata sull’evidenza per un razionale scientifico in "PNEI REVIEW" 1/2024, pp 68-81, DOI: 10.3280/PNEI2024-001006