The Impact of Smart Technologies on theManagement and Strategic Control: A Structured Literature Review

Journal title MANAGEMENT CONTROL
Author/s Rosa Lombardi, Raffaele Trequattrini, Federico Schimperna, Myriam Cano-Rubio
Publishing Year 2021 Issue 2021/suppl. 1
Language English Pages 20 P. 11-30 File size 293 KB
DOI 10.3280/MACO2021-001-S1002
DOI is like a bar code for intellectual property: to have more infomation click here

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This research proposes a systematic literature review (SLR) of the application of big data, analytics, business intelligence, and artificial intelligence to company management and strategic control. Thus, this paper attempts to answer the following research questions: 1) How is the literature on the application of big data, analytics, business intelligence, and artificial intelligence to management and strategic control developed in the business, management and accounting fields? 2) On which aspects of this application does the literature focus? 3) What are the implications that arise for companies? In this paper, we used a longitudinal study of research documents in the form of last-decade literature collected from Scopus database as the leading source for the international scenario. After, we selected business, management, and accounting areas, and screened the titles and abstracts of the research documents, we based the final result on 60 scientific documents as sources relevant to the aim of this SLR. The findings highlight four main topic clusters. We specifically explain smart technologies’ usefulness for each analyzed business function, and, while adopting a critical perspective, we point out the interesting current streams of research resulting from the application of new sources of technology. We conclude by proposing valuable insights gleaned from the study. Thus, our results are useful for both the academic and the professional community.

Keywords: Big data, Analytics, Business intelligence, Artificial intelligence, Management and strategic control, Decision-making

  1. Akter S., Wamba S.F., Gunasekaran A., Dubey R., Childe S.J. (2016), How to improve firm performance using big data analytics capability and business strategy alignment?. International Journal of Production Economics, 182, pp. 113-131.
  2. Aleksandrova E., Vinogradova V., Tokunova G. (2019), Integration of digital technologies in the field of construction in the Russian Federation, Engineering Management in Production and Services, 11(3), pp. 38-47.
  3. Arnaboldi M., Busco C., Cuganesan S. (2017), Accounting, accountability, social media and big data: revolution or hype?, Accounting, auditing & accountability journal.
  4. Ayoub N., Wang K., Kagiyama T., Seki H., Naka Y. (2006), A planning support system for biomass-based power generation, Computer Aided Chemical Engineering (Vol. 21, pp. 1899-1904). Elsevier.
  5. Bordeleau F.E., Mosconi E., de Santa-Eulalia L.A. (2020), Business intelligence and analytics value creation in Industry 4.0: a multiple case study in manufacturing medium enterprises, Production Planning & Control, 31(2-3), pp. 173-185.
  6. Brusa L. (2012), Sistemi manageriali di programmazione e controllo. Giuffrè Editore.
  7. Castellano N., Presti C., Del Gobbo R. (2017). Employing Big Data & Analytics in Decision-Making: Factors Affecting Managers’ Trustworthiness, The European Conference on Information Systems Management (pp. 37-46), Academic Conferences International Limited.
  8. Chae B.K., Yang C., Olson D., Sheu C. (2014), The impact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) perspective, Decision support systems, 59, pp. 119-126.
  9. Changchien S.W., Lin M.C. (2005), Design and implementation of a case-based reasoning system for marketing plans. Expert systems with applications, 28(1), pp. 43-53.
  10. Culver T., Green L., Redden J. (2019), Peering into the Future of Intelligent Systems: Lessons from the SPRING Program, Research-Technology Management, 62(3), pp. 21-30.
  11. Cyert R.M., March J.G. (1963), Behavioral Theory of the Firm, Oxford, Blackwell.
  12. Dąbrowski J. (2017), Towards an adaptive framework for goal-oriented strategic decision-making, 2017 IEEE 25th International Requirements Engineering Conference (RE) (pp. 538-543), IEEE.
  13. Daskalova, M., & Ivanova, D. (2019). How Big Data Affect Management Control Systems. In 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS) (pp. 1-5). IEEE.
  14. Dewey J. (1997), How we think. Courier Corporation.
  15. Ding L., Matthews J. (2009), A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture, Computers & Industrial Engineering, 57(4), pp. 1457-1471.
  16. Elbashir M.Z., Collier P.A., Sutton S.G., Davern M.J., Leech S.A. (2013), Enhancing the business value of business intelligence: The role of shared knowledge and assimilation, Journal of Information Systems, 27(2), pp. 87-105.
  17. Elbashir M.Z., Collier P.A., Sutton S.G. (2011), The role of organizational absorptive capacity in strategic use of business intelligence to support integrated management control systems, The Accounting Review, 86(1), pp. 155-184.
  18. Eriksson T., Bigi A., Bonera M. (2020), Think with me, or think for me? On the future role of artificial intelligence in marketing strategy formulation, The TQM Journal.
  19. Gavrilova T., Kudryavtsev D., Grinberg E. (2019), Aesthetic knowledge diagrams: bridging understanding and communication, Knowledge Management, Arts, and Humanities (pp. 97-117), Cham, Springer.
  20. Hossnofsky V., Junge S. (2019), Does the market reward digitalization efforts? Evidence from securities analysts’ investment recommendations, Journal of Business Economics, 89(8-9), pp. 965-994.
  21. Huber G.P. (1991), Organizational learning: The contributing processes and the literatures, Organization science, 2(1), pp. 88-115.
  22. Klatt T., Schlaefke M., Moeller K. (2011), Integrating business analytics into strategic planning for better performance, Journal of business strategy.
  23. Kobbacy K.A., Vadera S. (2011), A survey of AI in operations management from 2005 to 2009, Journal of Manufacturing Technology Management.
  24. Kohnová L., Papula J., Salajová N. (2019), Internal factors supporting business and technological transformation in the context of Industry 4.0., Business: Theory and practice, 20, pp. 137-145.
  25. Kraus S., Breier M., Dasí-Rodríguez S. (2020), The art of crafting a systematic literature review in entrepreneurship research, International Entrepreneurship and Management Journal, pp. 1-20.
  26. Krumeich J., Jacobi S., Werth D., Loos P. (2014). Towards planning and control of business processes based on event-based predictions, International Conference on Business Information Systems (pp. 38-49), Cham, Springer.
  27. Kumar S., Singh R. (2008), Automation of strip-layout design for sheet metal work on progressive die, Journal of materials processing technology, 195(1-3), pp. 94-100.
  28. Kunc M., O’brien F.A. (2019), The role of business analytics in supporting strategy processes: Opportunities and limitations, Journal of the Operational Research Society, 70(6), pp. 974-985.
  29. Lee M.T., Widener S.K. (2016), The performance effects of using business intelligence systems for exploitation and exploration learning, Journal of Information Systems, 30(3), pp. 1-31.
  30. Liu L., Daniels H., Hofman W. (2013, July), Business intelligence for improving supply chain risk management, International Conference on Enterprise Information Systems (pp. 190-205), Cham, Springer.
  31. Lněnička M., Máchová R., Komárková J., Čermáková I. (2017), Components of big data analytics for strategic management of enterprise architecture. In SMSIS 2017: Proceedings of the 12th International Conference on Strategic Management and its Support by Information Systems, Vysoká škola báňská-Technická univerzita Ostrava.
  32. Lombardi R., Schimperna F., Marcello R. (2021), Human capital and smart tourism’s development: primary evidence, International Journal of Digital Culture and Electronic Tourism, Article in press.
  33. Lombardi R., Trequattrini R., Battista M. (2014), Systematic errors in decision making processes: the case of the Italian Serie A football championship, International Journal of Applied Decision Sciences, 7(3), pp. 239-254.
  34. Lombardi R., Chiucchi M.S., Mancini D. (2020a), Smart Technologies, Digitalizzazione e Capitale intellettuale. Sinergie e opportunità, Milano, FrancoAngeli.
  35. Lombardi R., Tiscini R., Trequattrini R., Martiniello L. (2020b), Strategic entrepreneurship, Management Decision.
  36. Mahraz M.-I., Benabbou L., Berrado A. (2019). A systematic literature review of digital transformation. In Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 917-931.
  37. Mancini D. (2018), Evoluzione e prospettive dei sistemi di informazione e controllo, Management Control, Suppl. 2, pp. 5-14. DOI: 10.3280/MACO2018-00SU2001
  38. Mancini D., Ferruzzi C. (2016), Using collaboration platforms for management control processes: new opportunities for integration, Empowering Organizations (pp. 91-101), Cham, Springer.
  39. Marasca S., Marchi L., Riccaboni A. (2013), Controllo di gestione: metodologie e strumenti. Amministrazione, finanza e controllo, Knowita.
  40. March J.G., Simon H.A. (1958), Organizations, New York, Wiley.
  41. Marchi L. (2011), L’evoluzione del controllo di gestione nella prospettiva informative e gestionale esterna, Management Control, 3, pp. 5-16. DOI: 10.3280/MACO2011-003001
  42. Marchi L., Marasca S., Chiucchi M.S. (2018), Controllo di gestione, Giappichelli Editore.
  43. Marchini P.L., Medioli A., Belli L., Davoli L. (2019), Internet of Things e Industria 4.0. Un case study di successo di digital manufacturing, Management Control, 3, pp. 11-34. DOI: 10.3280/MACO2019-003002
  44. Massaro M., Dumay J., Guthrie J. (2016), On the shoulders of giants: undertaking a structured literature review in accounting, Accounting, Auditing & Accountability Journal.
  45. Mazouz A. (2016), Quality management business analytics framework. International Journal of Economics and Business Research, 12(1), pp. 1-18.
  46. Mella P. (2001). Il processo decisorio, in Temi per l’Economi Aziendale, pubblicato sul sito internet www.ea2000.it.
  47. Motawa I.A., Anumba C.J., Lee S., Peña-Mora F. (2007), An integrated system for change management in construction. Automation in construction, 16(3), pp. 368-377.
  48. Pan M., Rao Y. (2009), An integrated knowledge based system for sheet metal cutting–punching combination processing, Knowledge-Based Systems, 22(5), pp. 368-375.
  49. Paschen U., Pitt C., Kietzmann J. (2020), Artificial intelligence: Building blocks and an innovation typology. Business Horizons, 63(2), pp. 147-155.
  50. Pasichnyi O., Levihn F., Shahrokni H., Wallin J., Kordas O. (2019), Data-driven strategic planning of building energy retrofitting: The case of Stockholm, Journal of cleaner production, 233, pp. 546-560.
  51. Pavan A. (2019), Controllo interno e di gestione nella prospettiva del valore, Management Control, Suppl. 1, pp. 5-12. DOI: 10.3280/MACO2019-SU100
  52. Peters M.D., Wieder B., Sutton S.G. (2018), Organizational improvisation and the reduced usefulness of performance measurement BI functionalities, International Journal of Accounting Information Systems, 29, pp. 1-15.
  53. Peters M.D., Wieder B., Sutton S.G., Wakefield J. (2016), Business intelligence systems use in performance measurement capabilities: Implications for enhanced competitive advantage, International Journal of Accounting Information Systems, 21, pp. 1-17.
  54. Petticrew M., Roberts H. (2008), Systematic reviews in the social sciences: A practical guide. Oxford, Blackwell Publishing.
  55. Salehi M., Tavakkoli-Moghaddam R. (2009), Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning, Engineering Applications of Artificial Intelligence, 22(8), pp. 1179-1187.
  56. Schimperna F., Lombardi R., Belyaeva Z. (2020), Technological Transformation, Culinary Tourism and Stakeholder Engagement: Emerging Trends from a Systematic Literature Review. Journal of Place Management and Development, Forecoming.
  57. Schläfke M., Silvi R., Möller K. (2013), A framework for business analytics in performance management, International Journal of Productivity and Performance Management.
  58. Schröder T., Geldermann J. (2019). Improving planning by integrating spatial data into decision support systems. Journal of Decision Systems, 28(4), pp. 309-329.
  59. Secundo G., Ndou V., Del Vecchio P., De Pascale G. (2020), Sustainable development, intellectual capital and technology policies: A structured literature review and future research agenda, Technological Forecasting and Social Change, Vol. 153.
  60. Seo Y., Sheen D., Kim T. (2007), Block assembly planning in shipbuilding using case-based reasoning. Expert Systems with Applications, 32 (1), pp. 245-253.
  61. Simon H.A. (1958), Il comportamento amministrativo, Bologna, Il Mulino.
  62. Simon H.A. (1960), New Science of Management Decision, Harper & Row.
  63. Spangenberg N., Augenstein C., Wilke M., Franczyk B. (2018), An Intelligent and Data-Driven Decision Support Solution for the Online Surgery Scheduling Problem. In International Conference on Enterprise Information Systems (pp. 82-103), Cham, Springer.
  64. To C.K., Fung H.K., Harwood R.J., Ho K.C. (2009), Coordinating dispersed product development processes: A contingency perspective of project design and modelling. International journal of production economics, 120(2), pp. 570-584.
  65. Tokic D. (2018), BlackRock Robo‐Advisor 4.0: When artificial intelligence replaces human discretion, Strategic Change, 27(4), pp. 285-290.
  66. Tranfield D., Denyer D., Smart P. (2003), Towards a methodology for developing evidence‐informed management knowledge by means of systematic review, British journal of management, 14(3), pp. 207-222.
  67. Trequattrini, R. (2004). Processo decisionale e valore delle aziende. Un approccio integrato, Torino, G. Giappichelli Editore.
  68. Vacík E., Fotr J., Špaček M., Souček I. (2014), Scenarios and their application in strategic planning.
  69. Van Eck N.J., Waltman L. (2017), Citation-based clustering of publications using CitNetExplorer and VOSviewer, Scientometrics, 111(2), pp. 1053-1070.
  70. Verlinden B., Duflou J.R., Collin P., Cattrysse D. (2008), Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study, International Journal of Production Economics, 111(2), pp. 484-492.
  71. Vitale G., Cupertino S., Riccaboni A. (2020), Big data and management control systems change: the case of an agricultural SME, Journal of Management Control, pp. 1-30.
  72. Vosniakos G.C., Galiotou V., Pantelis D., Benardos P., Pavlou P. (2009). The scope of artificial neural network metamodels for precision casting process planning, Robotics and Computer-Integrated Manufacturing, 25(6), pp. 909-916.
  73. Wang Y., Zhao X., Zhang X. (2011), Construction and operation of cultivation model for enterprise competitive intelligence competence. In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 2004-2007), IEEE.
  74. Warren Jr J.D., Moffitt K.C., Byrnes P. (2015), How Big Data will change accounting, Accounting Horizons, 29(2), pp. 397-407.
  75. Wen W., Wang W. K., Wang C.H. (2005), A knowledge-based intelligent decision support system for national defense budget planning, Expert Systems with Applications, 28(1), pp. 55-66.
  76. Yuan F.C. (2009), The use of a fuzzy logic-based system in cost-volume-profit analysis under uncertainty, Expert Systems with Applications, 36(2), pp. 1155-1163.
  77. Zarrin S., Daim T.U. (2019), Strategic Technology Planning in Product-Service Systems with Embedded Customer Experience Requirements. In 2019 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1-9). IEEE.

  • The impact of digitalisation on professional football clubs Fabio Nappo, Alessandra Lardo, Maria Teresa Bianchi, Federico Schimperna, in MANAGEMENT CONTROL 2/2023 pp.117
    DOI: 10.3280/MACO2023-002006
  • How Smart Technologies Affect the Decision-Making and Control System of Food and Beverage Companies—A Case Study Domenica Lavorato, Palmira Piedepalumbo, in Sustainability /2023 pp.4292
    DOI: 10.3390/su15054292
  • Il contributo di Management Control alla ricerca su tecnologie digitali e sostenibilità Daniela Mancini, Domenica Lavorato, Palmira Piedepalumbo, in MANAGEMENT CONTROL 2/2023 pp.5
    DOI: 10.3280/MACO2023-002001
  • Gestione integrata dei dati e performance aziendali Antonella Paolini, in MANAGEMENT CONTROL 2/2022 pp.5
    DOI: 10.3280/MACO2022-002001
  • Universities and CSR Teaching: New Challenges and Trends Federico Schimperna, Fabio Nappo, Federica Collaretti, in Administrative Sciences /2022 pp.55
    DOI: 10.3390/admsci12020055
  • Le politiche pubbliche a sostegno della crisi da COVID-19 nel settore turistico: un'analisi esplorativa Elisabetta Reginato, Francesca Cabiddu, Patrizia Modica, in MANAGEMENT CONTROL 1/2023 pp.95
    DOI: 10.3280/MACO2023-001005
  • Student Entrepreneurship in Universities: The State-of-the-Art Federico Schimperna, Fabio Nappo, Bruno Marsigalia, in Administrative Sciences /2021 pp.5
    DOI: 10.3390/admsci12010005
  • Towards Digital and Sustainable Organisations Manuela Paolini, Domenico Raucci, pp.69 (ISBN:978-3-031-52879-8)
  • L'interfaccia Accounting-Marketing. Il ruolo del controller e dei sistemi informativi nella Customer Profitability Analysis Luca Ianni, Armando Della Porta, Fabrizio Barbarossa, in MANAGEMENT CONTROL 2/2022 pp.165
    DOI: 10.3280/MACO2022-002008
  • I Big Data non "parlano da soli". Il ruolo dei modelli nella diffusione degli analytics per il management accounting Roberto Del Gobbo, in MANAGEMENT CONTROL 1/2023 pp.5
    DOI: 10.3280/MACO2023-001001
  • Intelligenza artificiale e accounting: le possibili relazioni Diego Valentinetti, Michele A. Reaa, in MANAGEMENT CONTROL 2/2023 pp.93
    DOI: 10.3280/MACO2023-002005
  • Management control in inter-firm relationships: Opportunities and challenges of blockchain technology adoption Giovanna Centorrino, Guido Noto, Daniela Rupo, in MANAGEMENT CONTROL 3/2022 pp.65
    DOI: 10.3280/MACO2022-003004

Rosa Lombardi, Raffaele Trequattrini, Federico Schimperna, Myriam Cano-Rubio, The Impact of Smart Technologies on theManagement and Strategic Control: A Structured Literature Review in "MANAGEMENT CONTROL" suppl. 1/2021, pp 11-30, DOI: 10.3280/MACO2021-001-S1002