University-industry linkages. Among italian regions: a supply-demand analysis

Author/s Eleonora Pierucci
Publishing Year 2015 Issue 2015/2 Language English
Pages 29 P. 5-33 File size 232 KB
DOI 10.3280/REST2015-002001
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The aim of this work is to investigate University-Industry (U-I) collaborations in biopharmaceuticals applying a supply-demand analysis at a regional level. As the most representative science-based industry, the biopharmaceutical, unlike other high-tech industry, has the vital need to engage in research activities with universities and public research centers to exploit knowledge spillovers, essential to its growth. Using co-publishing as a proxy for U-I linkages we explore through a supply- demand analysis the "market for co-publication" among Italian regions. Moreover, using a dataset constructed for the purpose of the research, we are able to exploit, for the first time, the panel dimension of data to investigate the determinants of U-I collaborations applying probabilistic models over a wide time horizon, which goes from 2001 to 2010. Among the main results, we document: 1) a marked shortage of demand for collaborations coming from firms; 2) heterogeneity among universities’ interaction performances; 3) limited collaborations with multinationals, often activated with the country of origin rather than with local branches; 4) positive impact on U-I linkages of geographical proximity, stock of academic staff and agglomeration of firms

Jel codes: O310, O320, O330, R100

  1. Abramo G., D’Angelo C., Di Costa F. (2011), University-Industry Research Collaboration: A Model to assess University Capability, Higher Education, 62 (2), 163-181.
  2. Abramo G., D’Angelo C.A., Solazzi M. (2010), Assessing Public-private Research Collaboration: Is it possible to compare University Performance?, Scientometrics, 84 (1), pp. 173-197.
  3. Acs Z., Audretsch D., Feldman M. (1994), R&D Spillovers and Recipient Firm Size, The Review of Economics and Statistics, 76: pp. 336-340.
  4. Anselin L., Varga A., Acs Z. (1997), Local Geographic Spillovers between University Research and High-technology Innovations, Journal of Urban Economics, 42, pp. 422-448.
  5. Anselin L., Varga A., Acs Z. (2000), Geographic and Sectoral Characteristics of Academic Knowledge Externalities, Papers in Regional Science, 79, pp. 435-443.
  6. Arora A., Gambardella A., Pammolli F., Riccaboni M. (2004), The Nature and the Extent of the Market for Technology in Biopharmaceuticals. In F. Cesaroni, A.
  7. Gambardella, W. Garcia-Fontes (eds.), R&D, Innovation and Competitiveness in the European Chemical Industry. Dordrecht: Springer US, pp. 175-202.
  8. Audretsch D., Feldman M. (1996), Spillovers and the Geography of Innovation and Production, American Economic Review, 86, pp. 630-640.
  9. Audretsch D., Lehmann E.E., Warning S. (2005), University Spillovers and New Firm Location, Research Policy, 34, pp. 1113-1122.
  10. Boschma R. (2005), Proximity and Innovation: A Critical Assessment, Regional Studies, 39 (1), pp. 61-74.
  11. Brusoni S., Criscuolo P., Geuna A. (2005), The Knowledge Bases of the World’s Largest Pharmaceutical Groups: What do Patent Citations to Non-patent Literature Reveal?, Economics of Innovation and New Technology, 14 (5), pp. 395-415.
  12. Calvert J., Patel P. (2003), University-Industry Research Collaborations in the UK: Bibliometric Trends, Science and Public Policy, 30 (2), pp. 85-96.
  13. Cockburn I.M., Henderson R.M. (1996), Public-private Interaction in Pharmaceutical Research, Proceeding of the National Academy of Sciences of the United States of America, 93 (23), pp. 12725-12730.
  14. Cockburn I.M., Henderson R.M. (1998), Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery, Journal of Industrial Economics, 46 (2), pp. 157-182. Cooke P. (2001a), Regional Innovation Systems, Clusters, and the Knowledge Economy, Industrial and Corporate Change, 10, pp. 945-974.
  15. Cooke P. (2001b), Biotechnology Clusters in the UK: Lessons from Localisation in the Commercialisation of Science, Small Business Economics, 17 (1-2), pp. 43-59.
  16. Cooke P. (2004), Regional Innovation Systems: An Evolutionary Approach. In P. Cooke, M. Heidenreich, H. Braczyk (eds.), Regional Innovation Systems: The Role of Governance in a Globalized World. London: Routledge, pp. 1-18.
  17. D’Amore R., Iorio R., Labory S., Stawinoga A. (2013), Research Collaboration Networks in Biotechnology: Exploring the Trade-off between Institutional and Geographic Distances, Industry and Innovation, 20: pp. 261-276.
  18. D’Este P., Guy F., Iammarino S. (2013), Shaping the Formation of University-Industry Research Collaborations: What type of proximity does Really matter? Journal of Economic Geography, 13, pp. 537-558.
  19. D’Este P., Patel P. (2007), University-Industry Linkages in the UK: What are the Factors underlying the Variety of Interactions with Industry?, Research Policy, 36 (9), pp. 1295-1313.
  20. EFPIA (2012), The pharmaceutical industry in figures: Key data 2012, European Federation of Pharmaceutical Industries and Associations.
  21. Etzkowitz H., Leydesdorff L. (eds.) (1997), Universities in the Global Economy: A Triple Helix of University-Industry-Government Relations. London: Cassell Academic.
  22. Etzkowitz H., Leydesdorff L. (2000), The Dynamics of Innovation: From National Systems and “Mode 2” to a Triple Helix of University-Industry-Government Relations, Research Policy, 29, pp. 109-123.
  23. Fabrizio K.R. (2009), Absorptive Capacity and the Search for Innovation, Research Policy, 38 (2), pp. 255-267.
  24. Farmindustria (2008), Indicatori farmaceutici, Rapporto Farmindustria.
  25. Farmindustria (2014), Indicatori farmaceutici, Rapporto Farmindustria
  26. Feldman M.P. (1999), The New Economics of Innovation, Spillovers and Agglomeration: A Review of Empirical Studies, The Economics of Innovation and New Technology, 8: pp. 5-25.
  27. Feldman M.P., Audretsch D. (1999), Innovation in Cities: Science-based Diversity, Specialisation, and Localised Competition, European Economic Review, 43, pp. 409-429.
  28. Fritsch M., Slavtchev V. (2007), Universities and Innovation in Space, Industry and Innovation, 14, pp. 201-218.
  29. Furman J.L., Kyle M.K., Cockburn I., Henderson R. (2006), Public and Private Spillovers, Location, and the Productivity of Pharmaceutical Research, Annales d’Economie et Statistique, 79-80.
  30. Gambardella A., Orsenigo L., Pammolli F. (2000), Global Competitiveness in Pharmaceuticals: An European Perspective. Report Prepared for the Enterprise Directorate-General of the European Commission, MPRA Paper 15965, University Library of Munich, Germany.
  31. Geuna A., Rossi F. (2011), Changes to University IPR Regulations in Europe and the Impact on Academic Patenting, Research Policy, 40 (8), pp. 1068-1076.
  32. Gittelman M., Kogut B. (2003), Does Good Science lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns, Management Science, 49 (4), pp. 366-382.
  33. Giunta A., Pericoli F.M., Pierucci E. (2015), University-Industry Collaboration in the Biopharmaceuticals: The Italian Case, The Journal of Technology Transfer, forthcoming, DOI: 10.1007/s10961-015-9402-2
  34. Gunasekara C. (2006), Reframing the Role of Universities in the Development of Regional Innovation Systems, The Journal of Technology Transfer, 31, pp. 101-113.
  35. Henderson R., Jaffe A., Trajtenberg M. (1998), Universities as a Source of Commercial Technology: A Detailed Analysis of University Patenting, 1965-1988, The Review of Economics and Statistics, LXXX, pp. 119-127.
  36. Hicks D.M., Isard P.A., Martin B.R. (1996), A Morphology of Japanese and European Corporate Research Networks, Research Policy, 25 (3), pp. 359-378.
  37. Howells J. (1999), Regional Systems of Innovation? In D. Archibugi, J. Howells, J. Michie (eds.), Innovation Policy in a Global Economy. Cambridge: Cambridge University Press, pp. 67-93.
  38. Huggins R., Johnston A., Steffenson R. (2008), Universities, Knowledge Networks and Regional Policy, Cambridge Journal of Regions, Economy and Society, 2, pp. 321-340.
  39. Jaffe A.B. (1989), Real Effects of Academic Research, The American Economic Review, 79, pp. 957-970.
  40. Kenney M. (1988), Biotechnology: the University-Industrial Complex. New Haven: Yale University Press.
  41. Laranja M., Uyarra E., Flanagan K. (2008), Policies for Science, Technology and Innovation: Translating Rationales into Regional Policies in a Multi-level Setting, Research Policy, 37, pp. 823-835.
  42. Lazonick W., March E., Tulum Ö., (2007), Boston’s Biotech Boom. Lowell: Center for Industrial Competitiveness Working Paper. University of Massachusetts, May.
  43. Lazonick W., Öner T. (2011), US Biopharmaceutical Finance and the Sustainability of the US Biotech Business Model, Research Policy, 40, pp. 1170-1187.
  44. Leten B., Kelchtermans S., Belderbos R. (2010), Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms, Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  45. Morgan K. (1997), The Learning Region: Institutions, Innovation and Regional Renewal, Regional Studies, 31, pp. 491-503.
  46. Narin F., Rozek R.P. (1988), Bibliometric Analysis of US Pharmaceutical Industry Research Performance, Research Policy, 17 (3), pp. 139-154. Orsenigo L. (1989), The Emergence of Biotechnology: Institutions and Markets in Industrial Innovation. London: Pinter Publishers Ltd.
  47. Orsenigo L. (2001), The (Failed) Development of a Biotechnology Cluster: The Case of Lombardy, Small Business Economics, 17 (1-2), pp. 77-92.
  48. Pammolli F., Salerno N.C. (2011), Retail Distribution of Pharmaceuticals: Italy at the Crossroads, Economia e politica industriale, 2, pp. 125-148.
  49. Sharp M. (1999), The Science of Nations: European Multinationals and American Biotechnology, International Journal of Biotechnology, 1 (1), pp. 132-162.
  50. Sternitzke C. (2010), Knowledge sources, patent protection, and commercialization of pharmaceutical innovations, Research Policy, 39 (6), pp. 810-821.
  51. Zeller C. (2001), Clustering Biotech: A Recipe for Success? Spatial Patterns of Growth of Biotechnology in Munich, Rhineland and Hamburg, Small Business Economics, 17 (1-2), pp. 123-141.

Eleonora Pierucci, University-industry linkages. Among italian regions: a supply-demand analysis in "RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO" 2/2015, pp 5-33, DOI: 10.3280/REST2015-002001