Real and apparent changes of organizational processes in the era of big data analytics

Author/s Marcello Martinez, Primiano Di Nauta, Debora Sarno
Publishing Year 2018 Issue 2017/2 Language English
Pages 17 P. 91-107 File size 226 KB
DOI 10.3280/SO2017-002005
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

In the datafication era, organizations seem to face with a new digital frontier to climb over by collecting data, using new analytic tools, reengineering processes and re-designing structures. The questions are: are all these changes real?, is there any apparent change? Firstly, the paper presents some studies and cases related to the implementation of big data analytics (BDA), highlighting the organizational changes and challenges. Then, it proposes a conceptual framework for distinguishing between real and apparent changes of organizational processes due to BDA implementations by adopting the methodological lenses of the Viable Systems Approach. Based on this framework, possible guidelines for practitioners and academics are provided regarding to design, analysis and improvement of organizational systems.

Keywords: Big data analytics, organizational processes, real organizational change, viable systems approach, organizational systems.

  1. Aguiari, R., Di Nauta, P. (2012), “Governing business dynamics in complex contexts”, Mercati e Competitività, 1: 39-59, FrancoAngeli, Milano.
  2. Badinelli, R., Barile, S., Ng, I.C.L., Polese, F., Saviano, M., Di Nauta, P. (2012), “Viable service systems and decision making in service management”, Journal of Service Management, 23(4): 498-526.
  3. Badinelli, R.D, Sarno, D. (2017), “Integrating the internet of things and big data analytics into decision support models for healthcare management”, in Gummesson, E., Mele, C., Polese, F. (eds.), The 5th Naples Forum on Service. Service-Dominant Logic, Network & Systems Theory and Service Science: Integrating three perspectives for a new service agenda, Naples.
  4. Bain&Company (2013), Big data: The organizational challenge, by Pearson, T., Wegener, R.
  5. Bain&Company (2015), Three promises and perils of Big Data; by Almquist E., Senior J., Springer T.
  6. Barile, S., Di Nauta, P. (2011), “Viable Systems Approach for territory development”, in Barile, S., Bassano, C., Calabrese, M., Confetto, M.G., Di Nauta, P., Piciocchi, P., Polese, F., Saviano, M., Siano A., Siglioccolo, M., Vollero, A., Contributions to theoretical and practical advances in management. A Viable Systems Approach (vSa). ASVSA – Association for Research on Viable Systems, International Printing.
  7. Barile, S., Di Nauta P., Iandolo F. (2016), La decostruzione della complessità, Studi MOA – Collana di Management e Organizzazione Aziendale, Roma, Editrice Minerva Bancaria.
  8. Barile, S., Polese, F. (2010), “Smart Service Systems and Viable Service Systems: Applying Systems Theory to Service Science”, Service Science, 2(1-2): 21-40.
  9. Barile, S., Ciasullo, M.V., Troisi, O., Sarno, D. (2017), “The role of technology and institutions in tourism service ecosystems: Findings from a case study”, The TQM Journal, 29(6): 811-833.
  10. Barile, S., Saviano, M. (2011), “Foundations of systems thinking: the structure-system paradigm”, in Barile S., Bassano C., Calabrese M., Confetto M.G., Di Nauta P., Piciocchi P., Polese F., Saviano M., Siano A., Siglioccolo M., Vollero A., Contributions to theoretical and practical advances in management. A Viable Systems Approach (vSa), ASVSA – Association for Research on Viable Systems, International Printing.
  11. Brumana, M., Decastri, M., Scarozza, D., Za, S. (2014), “Innovazione tecnologica e organizzazione: trend, aree di ricerca e prospettive”, Studi Organizzativi, 2: 42-75.
  12. Bruni, A., Parolin, L.L. (2014), “Dalla produzione automatizzata agli ambienti tecnologicamente densi: la dimensione sociomateriale dell’agire organizzativo”, Studi Organizzativi, 1: 7-26.
  13. Camuffo, A. (2016), “The new HR challenges: big data, relevance and sustainability”, Economia & Management, 5(6): 117-125.
  14. Carrubbo, L., Di Nauta, P., Moretta Tartaglione, A. (2012), “A2A Relationships in Service Contexts”, China Business Review, 11(10): 873-890
  15. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012), “Business intelligence and analytics: From big data to big impact”, MIS Quarterly: Management Information Systems, 36(4): 1165-1188.
  16. Crabu, S. (2014), “Allineare umani, tecnologie e saperi: il lavoro infrastrutturante negli ambienti tecnologicamente densi” Studi Organizzativi, 1: 50-72.
  17. Davenport, T. H., Dyché, J. (2013), “Big data in big companies”, International Institute for Analytics. Available online at
  18. Davenport, T., Barth, P., Bean, R. (2012), “How ‘big data’ is different”, MIT Sloan Management Review, 54(1).
  19. Osservatorio Big Data Analytics & Business Intelligence (2016), Big Data: guidare il cambiamento, liberare valore. La ricerca, School of Management – Politecnico di Milano.
  20. Di Nauta, P. (2017), “Approcci cibernetici per la governance dei sistemi sociali. Lezioni dal passato o emergente attualità?”, Prospettive in Organizzazione, ASSIOA – Associazione Italiana di Organizzazione Aziendale, 6/2007. Available online at
  21. Espejo, R. (2017), “Organisational Systems and Innovation”, Prospettive in Organizzazione, ASSIOA – Associazione Italiana di Organizzazione Aziendale, 6/2007. Available online at
  22. Espejo, R., Reyes, A. (2011), Organizational Systems. Managing complexity with the viable system model. Springer, DOI 10.1007/978-3-642-19109-1.
  23. Galbraith, J.R. (2014), “Organization design challenges resulting from big data”, Journal of Organization Design JOD, 3(1): 2-13,
  24. George, G., Lin, Y. (2017), “Analytics, innovation, and organizational adaptation”. Innovation - Management, Policy & Practice, 19(1): 16-22, Research Collection Lee Kong Chian School Of Business.
  25. Golinelli, G.M., Gatti, M. (2000), “The Firm as a Viable System”, SYMPHONYA Emerging Issues in Management, 2.
  26. Grossman, R.L., Siegel, K.P. (2014), “Organizational models for big data and analytics”, Journal of Organization Design, Special Issue on Big Data and Organization Design, 3(1): 20-25.
  27. Hagen, C., Khan, K., Ciobo, M., Miller, J., Wall, D., Evans, H., Yadav, A. (2013), Big Data and the Creative Destruction of Today’s Business Models, ATKearney.
  28. Intel (2013), Planning Guide:Getting Started with Big Data
  29. Kates, A., Galbraith, J.R. (2010), Designing Your Organization: Using the Star Model to Solve 5 Critical Design Challenges, San Francisco, CA, Jossey-Bass.
  30. Laskowski, N. (2015), “Seven big data failures to watch out for”, TechTarget, Conference Notebook, available at:
  31. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N. (2011), “Big Data, Analytics and the Path From Insights to Value”, MIT Sloan Management Review; 52(2): 21-32, Cambridge.
  32. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H. (2011), Big data: The next frontier for innovation competition and productivity, McKinsey report.
  33. Martinez, M., Di Martino, B., Caporarello, L. (2014), “Composing and orchestrating the smart artifact: technological and organizational challenge”, Martinez, M., Di Martino, B., Caporarello, L. (eds.), Smart Organizations and Smart Artifacts, 7, Springer.
  34. Martinez, M. (1997), Teorie e modelli di Network per l’analisi organizzativa delle relazioni fra aziende, Collana di pubblicazioni del Dipartimento di Scienze Economiche Gestionali e Sociali, Università degli Studi del Molise.
  35. Mayer-Schönberger, V., Cukier, K. (2013), Big data: A revolution that will transform how we live, work, and think. Boston, MA, Eamon Dolan/Houghton Mifflin Harcourt.
  36. McKinsey&Company (2016), The age of analytics: competing in a data-driven world, Global McKynsey Institute.
  37. N.N.I. Initiative (2012), Core techniques and technologies for advancing big data science and engineering (BIGDATA), Available at:
  38. Normann, R. (1992), Le condizioni di sviluppo dell’impresa, Milano, Etas.
  39. Polese, F., Di Nauta, P. (2013), “A Viable Systems Approach to Relationship Management in S-D Logic and Service Science”, Die Betriebswirtschaft, Schäffer-Poeschel Verlag für Wirtschaft∙Steuern∙Recht GmbH, 73(2): 113-129.
  40. Parsons, T. (1971), The system of modern societies, Englewood Cliffs, Prentice-Hall.
  41. Press, G., (2013), “A Very Short History Of Big Data”, Forbes.
  42. Raicu, I., (2015), “Metaphors of Big Data. What do bacon, oil, tsunamis, exhaust, deluges, nuclear waste and teenage sex have in common?”, recode, available at:
  43. SAP Hana (2014), Real-time enterprise stories. Real Time Research Report.
  44. Saraceno, P. (1970), La Scienza dei Sistemi, Accademia dei Lincei.
  45. Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V. (2017), “Critical analysis of Big Data challenges and analytical methods”, Journal of Business Research, 70: 263-286.
  46. T Systems (2013). Big Data Readiness Assessment.
  47. Tushman, M., Anderson, P. (1986), “Technological discontinuities and organizational environments”, Administrative Science Quarterly, 31: 439-465.
  48. Vanauer, M., Böhle, C., Hellingrath, B. (2015), “Guiding the Introduction of Big Data in Organizations: A Methodology with Business – and Data-Driven Ideation and Enterprise Architecture Management-Based Implementation”, 48th Hawaii International Conference on System Sciences, IEEE Computer Society.
  49. Wang, C., Li, X., Zhou, X.H., Wang, A.L., Nedjah, N. (2016b), “Soft computing in big data intelligent transportation systems”, Appl. Soft Comput, 38: 1099–1108.
  50. Wang, H., Xu, Z., Fujita, H., Liu, S. (2016a), “Towards felicitous decision making: An overview on challenges and trends of Big Data”, Information Sciences (367-368): 747-765.
  51. Weill, P., Ross, J. W. (2009), IT savvy: What top executives must know to go from pain to gain, Harvard Business Press.
  52. Wessel, M. (2016), “How Big Data Is Changing Disruptive Innovation”, Harvard Business Review.
  53. Zikopoulos, P., Eaton, C. (2011) Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. 1st edition. McGraw-Hill Osborne Media.

  • Complexity and Sustainability in Megaprojects Primiano Di Nauta, Cristina Simone, Francesca Iandolo, Stefano Armenia, Marco Arcuri, pp.35 (ISBN:978-3-031-30878-9)
  • Significance and Challenges of Data-driven Product Generation and Retrofit Planning Melina Massmann, Maurice Meyer, Roman Dumitrescu, Sebastian von Enzberg, Maximilian Frank, Christian Koldewey, Arno Kühn, Jannik Reinhold, in Procedia CIRP /2019 pp.992
    DOI: 10.1016/j.procir.2019.04.226
  • Smart Education and e-Learning - Smart Pedagogy Barbara Borin, Matteo Caroli, Nunzio Casalino, Maurizio Cavallari, Nadia Di Carluccio, Primiano Di Nauta, Giuliana Pizzolo, pp.211 (ISBN:978-981-19-3111-6)
  • Smart Education and e-Learning 2021 Nunzio Casalino, Stefano Armenia, Primiano Di Nauta, pp.197 (ISBN:978-981-16-2833-7)
  • Rethinking Work: Pathways and Practices in Business and Society. Introduction to the Special Issue. Luigi Moschera, Mario Pezzillo Iacono, Giovanna Lo Nigro, Laura Lucia Parolin, in STUDI ORGANIZZATIVI 2/2019 pp.9
    DOI: 10.3280/SO2018-002001
  • Smart Education and e-Learning - Smart Pedagogy Elisa Bertocchi, Matteo Caroli, Nunzio Casalino, Stefano Falà, Marco Giovannetti, Katia Infante, Alessia Orsi, Emanuela Mariotti, Fabio Massimi, Valerio Manzo, Giuliana Pizzolo, Giovanni Paolo Sellitto, pp.269 (ISBN:978-981-19-3111-6)

Marcello Martinez, Primiano Di Nauta, Debora Sarno, Real and apparent changes of organizational processes in the era of big data analytics in "STUDI ORGANIZZATIVI " 2/2017, pp 91-107, DOI: 10.3280/SO2017-002005