The vagal function: a link between psyche, brain and body

Journal title PNEI REVIEW
Author/s Andrea Minelli, Michael Di Palma
Publishing Year 2022 Issue 2022/1 Language Italian
Pages 18 P. 20-37 File size 320 KB
DOI 10.3280/PNEI2022-001003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page .

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Anteprima articolo

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The vagus nerve profoundly influences our everyday psychological moments and the ability to flexibly and adaptively respond to everchanging environmental demands, and it plays a crucial role in the dynamic regulation of biological allostatic systems. Vagal activity is modulated by a multi-level, hierarchical neural network including many interconnected cerebral structures, called central autonomic network (CAN), yielding neuro-visceral integration via multiple centre-periphery (brain-body) iterative feedback loops operating at various levels of complexity in the neuroaxis. New types of information are integrated at each CAN level, and, as a result, each level is more flexibly recruited to modify vagal tone than the level below as a function of context. Studies offer compelling evidence that vagal output is associated with various neuropsychic processes, i.e. emotion and its regulation, inhibitory control and executive functions. Deficit of vagal function, indexed by low heart rate variability (HRV), correlates to psychophysiological response rigidity, allostatic dysregulation, and increased risk for several medical and neuropsychiatric conditions.

Keywords: Allostasis, Allostatic load, Parasympathetic nervous system, Central autonomic network, Heart rate variability, Neuro-visceral integration.

  1. Albinet C.T., Boucard G., Bouquet C.A., & Audiffren M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617–624.
  2. Benichou T., Pereira B., Mermillod M., Tauveron I., Pfabigan D., Maqdasy S., & Dutheil F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One, 13(4), e0195166.
  3. Chalmers J.A., Quintana D.S., Abbott M.J., & Kemp A.H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Frontiers in Psychiatry, 5, 80.
  4. Chen W.G., Schloesser D., Arensdorf A.M., Simmons J.M., Cui C., Valentino R., Gnadt J.W., Nielsen L., Hillaire-Clarke C.S., Spruance V., Horowitz T.S., Vallejo Y.F., & Langevin H.M. (2021). The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends in neurosciences, 44(1), 3–16.
  5. Clamor A., Lincoln T.M., Thayer J.F., & Koenig J. (2016). Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. British Journal of Psychiatry, 208(1), 9–16.
  6. Di Simplicio M., Costoloni G., Western D., Hanson B., Taggart P., & Harmer C.J. (2012). Decreased heart rate variability during emotion regulation in subjects at risk for psychopathology. Psychological Medicine, 42(8), 1775–1783. DOI: 10.1017/S0033291711002479
  7. Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A., Burger A.M., Jaramillo A.M., Mertens A., Majid A., Verkuil B., Badran B.W., Ventura-Bort C., Gaul C., Beste C., Warren C.M., Quintana D.S., Hämmerer D., Freri E., Frangos E., Tobaldini E., Kaniusas E., Rosenow F., Capone F., Panetsos F., Ackland G.L., Kaithwas G., O’Leary G.H., Genheimer H., Jacobs H.I.L., Van Diest I., Schoenen J., Redgrave J., Fang J., Deuchars J., Széles J.C., Thayer J.F., More K., Vonck K., Steenbergen L., Vianna L.C., McTeague L.M., Ludwig M., Veldhuizen M.G., De Couck M., Casazza M., Keute M., Bikson M., Andreatta M., D’Agostini M., Weymar M., Betts M., Prigge M., Kaess M., Roden M., Thai M., Schuster N.M., Montano, N., Hansen N., Kroemer N.B., Rong P., Fischer R., Howland R.H., Sclocco R., Sellaro R., Garcia R.G., Bauer S., Gancheva S., Stavrakis S., Kampusch S., Deuchars S.A., Wehner S., Laborde S., Usichenko T., Polak T., Zaehle T., Borges U., Teckentrup V., Jandackova V.K., Napadow V., & Koenig J. (2020). International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 14, 568051.
  8. Geisler F.C., Kubiak T., Siewert K., & Weber H. (2013). Cardiac vagal tone is associated with social engagement and self-regulation. Biological Psychology, 93(2), 279–286.
  9. Geisler F.C., Vennewald N., Kubiak T., & Weber H.J.P. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723–728.
  10. Gillie B.L., Vasey M.W., & Thayer J.F. (2014). Heart rate variability predicts control over memory retrieval. Psychological Science, 25(2), 458–465. DOI: 10.1177/095679761350878
  11. Hillebrand S., Gast K.B., de Mutsert R., Swenne C.A., Jukema J.W., Middeldorp S., Rosendaal F.R., & Dekkers O.M. (2013). Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: metaanalysis and dose-response meta-regression. Europace, 15(5), 742–749.
  12. Jarczok M.N., Kleber M.E., Koenig J., Loerbroks A., Herr R.M., Hoffmann K., Fischer J.E., Benyamini Y., & Thayer J.F. (2015). Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS One, 10(2), e0117196.
  13. Jarczok M.N., Koenig J., Mauss D., Fischer J.E., & Thayer J.F. (2014). Lower heart rate variability predicts increased level of C-reactive protein 4 years later in healthy, nonsmoking adults. Journal of Internal Medicine, 276(6), 667–671.
  14. Kemp A.H., Brunoni A.R., Santos I.S., Nunes M.A., Dantas E.M., Carvalho de Figueiredo R., Pereira A.C., Ribeiro A.L., Mill J.G., Andreao R.V., Thayer J.F., Bensenor I.M., & Lotufo P.A. (2014). Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: an ELSA-Brasil cohort baseline study. American Journal of Psychiatry, 171(12), 1328–1334.
  15. Kemp A.H., Quintana D.S., Felmingham K.L., Matthews S., & Jelinek H.F. (2012). Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS One, 7(2), e30777.
  16. Kemp A.H., Quintana D.S., Gray M.A., Felmingham K.L., Brown K., & Gatt J.M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074.
  17. Kloter E., Barrueto K., Klein S.D., Scholkmann F., & Wolf U. (2018). Heart Rate Variability as a Prognostic Factor for Cancer Survival - A Systematic Review. Frontiers in Physiology, 9, 623.
  18. Kok B.E., Coffey K.A., Cohn M.A., Catalino L.I., Vacharkulksemsuk T., Algoe S.B., Brantley M., & Fredrickson B.L. (2013). How positive emotions build physical health: perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychological Science, 24(7), 1123–1132. DOI: 10.1177/095679761247082
  19. Krypotos A.M., Jahfari S., van Ast V.A., Kindt M., & Forstmann B.U. (2011). Individual Differences in Heart Rate Variability Predict the Degree of Slowing during Response Inhibition and Initiation in the Presence of Emotional Stimuli. Frontiers in Psychology, 2, 278.
  20. Lu W., Wang Z., & Liu Y. (2013). A pilot study on changes of cardiac vagal tone in individuals with low trait positive affect: the effect of positive psychotherapy. International Journal of Psychophysiology, 88(2), 213–217.
  21. Mastitskaya S., Thompson N., & Holder D. (2021). Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Frontiers in neuroscience, 15, 667036.
  22. Reyes del Paso G.A., Langewitz W., Mulder L.J., van Roon A., & Duschek S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50(5), 477–487.
  23. Sakaki M., Yoo H.J., Nga L., Lee T.H., Thayer J.F., & Mather M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. Neuroimage, 139, 44–52.
  24. Smith R., Thayer J.F., Khalsa S.S., & Lane R.D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 75, 274–296.
  25. Sripada C., Angstadt M., Kessler D., Phan K.L., Liberzon I., Evans G.W., Welsh R.C., Kim P., & Swain J.E. (2014). Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. Neuroimage, 89, 110–121.
  26. Sterling P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 5–15.
  27. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., 3rd, & Wager T.D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.
  28. Thayer J.F., & Sternberg E. (2006). Beyond heart rate variability: vagal regulation of allostatic systems. Annals of the New York Academy of Sciences, 1088, 361–372.
  29. Thomas B.L., Claassen N., Becker P., & Viljoen M. (2019). Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology, 78(1), 14–26. DOI: 10.1159/00049551
  30. Tracey K.J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418–428.
  31. Verkuil B., Brosschot J.F., & Thayer J.F. (2014). Cardiac reactivity to and recovery from acute stress: temporal associations with implicit anxiety. International Journal of Psychophysiology, 92(2), 85–91.
  32. Vogt B. (2009). Cingulate neurobiology and disease. Oxford: Oxford University Press.

Andrea Minelli, Michael Di Palma, La funzione vagale: un link fra psiche, cervello e corpo in "PNEI REVIEW" 1/2022, pp 20-37, DOI: 10.3280/PNEI2022-001003