The autonomic nervous system and the vagus nerve at the beginning of life

Journal title PNEI REVIEW
Author/s Chiara Viglione, Marco Chiera, Stefano Vecchi, Francesco Cerritelli, Andrea Manzotti
Publishing Year 2022 Issue 2022/1 Language Italian
Pages 15 P. 38-52 File size 178 KB
DOI 10.3280/PNEI2022-001004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page .

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Anteprima articolo

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The autonomic nervous system (ANS) plays a central role in determining the organism health and in regulating the organism’s adaptation to stressors. Nonetheless, little attention is paid to the ANS relationships with the immune and endocrine systems. More importantly, little attention is paid to the ANS development during gestation and to the factors that can affect its maturation, even though, through the analysis of heart rate variability (HRV), it is possible to monitor the ANS development during the fetal age and to prevent even deadly complications. Therefore, the purpose of this paper is to give a picture of the complexity of the ANS development, highlighting the role of the vagus nerve, with particular attention to the environmental factors that can interfere with fetal and neonatal development. Lastly, some relevant guidelines for clinical practice are given.

Keywords: Fetal development, Autonomic nervous system, Vagus nerve, Heart rate variability, Perinatal period, Environmental factors.

  1. Antonelli M.C., Frasch M.G., Rumi M., Sharma R., Zimmermann P., Molinet M.S., & Lobmaier S.M. (2022). Early Biomarkers and Intervention Programs for the Infant Exposed to Prenatal Stress. Current Neuropharmacology, 20(1), 94–106. DOI: 10.2174/1570159X1966621012515095
  2. Aplin J.D., Myers J.E., Timms K., & Westwood M. (2020). Tracking placental development in health and disease. Nature Reviews. Endocrinology, 16(9), 479–494
  3. Bonaz B., Sinniger V., & Pellissier S. (2021). Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Frontiers in Neuroscience, 15, 650971.
  4. Borsani E., Della Vedova A.M., Rezzani R., Rodella L.F., & Cristini C. (2019). Correlation between human nervous system development and acquisition of fetal skills: An overview. Brain and Development, 41(3), 225–233.
  5. Brändle J., Preissl H., Draganova R., Ortiz E., Kagan K.O., Abele H., Brucker S.Y., & Kiefer-Schmidt I. (2015). Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development. Frontiers in Human Neuroscience, 9, 147.
  6. Bystrova K. (2009). Novel mechanism of human fetal growth regulation: A potential role of lanugo, vernix caseosa and a second tactile system of unmyelinated lowthreshold C-afferents. Medical Hypotheses, 72(2), 143–146.
  7. Chiera M., Cerritelli F., Casini A., Barsotti N., Boschiero D., Cavigioli F., Corti C.G., & Manzotti A. (2020). Heart Rate Variability in the Perinatal Period: A Critical and Conceptual Review. Frontiers in Neuroscience, 14, 561186.
  8. Conradt E., Crowell S.E., & Lester B.M. (2018). Early life stress and environmental influences on the neurodevelopment of children with prenatal opioid exposure. Neurobiology of Stress, 9, 48–54.
  9. De las Cuevas C., & Sanz E.J. (2006). Safety of Selective Serotonin Reuptake Inhibitors in Pregnancy. Current Drug Safety, 1(1), 17–24. DOI: 10.2174/15748860677525259
  10. DiPietro J.A., Costigan K.A., & Voegtline K.M. (2015). Studies in fetal behavior: revisited, renewed, and reimagined. Monographs of the Society for Research in Child Development, 80(3), vii;1-94.
  11. (2019). Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiology of Aging, 78, 1–17.
  12. Fischer L.A., Demerath E., Bittner-Eddy P., & Costalonga M. (2019). Placental
  13. colonization with periodontal pathogens: the potential missing link. American Journal of Obstetrics and Gynecology, 221(5), 383–392.e3.
  14. Frasch M.G., Shen C., Wu H.-T., Mueller A., Neuhaus E., Bernier R.A., Kamara D., & Beauchaine T.P. (2021). Brief Report: Can a Composite Heart Rate Variability Biomarker Shed New Insights About Autism Spectrum Disorder in School-Aged Children? Journal of Autism and Developmental Disorders, 51(1), 346–356.
  15. Fritze D., Zhang W., Li J.-Y., Chai B., & Mulholland M. (2014). Thrombin Mediates Vagal Apoptosis and Dysfunction in Inflammatory Bowel Disease. Journal of Gastrointestinal Surgery, 18(8), 1495–1506.
  16. Garzoni L., Faure C., & Frasch M.G. (2013). Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero. Frontiers in Integrative Neuroscience, 7, 57.
  17. Goeden N., Velasquez J., Arnold K.A., Chan Y., Lund B.T., Anderson G.M., & Bonnin A. (2016). Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. Journal of Neuroscience, 36(22), 6041–6049.
  18. Gold N., Herry C.L., Wang X., & Frasch M.G. (2019). Fetal cardiovascular decompensation during labor predicted from the individual heart rate: a prospective study in fetal sheep near term and the impact of low sampling rate. arXiv:1911.01304
  19. Goldstein D.S. (2006). Adrenaline and the inner world: an introduction to scientific integrative medicine. Baltimore: Johns Hopkins University Press.
  20. Hemphill J.C., Andrews P., & De Georgia M. (2011). Multimodal monitoring and neurocritical care bioinformatics. Nature Reviews Neurology, 7(8), 451–460.
  21. Hoyer D., Schmidt A., Gustafson K.M., Lobmaier S.M., Lakhno I., van Leeuwen P., Cysarz D., Preisl H., & Schneider U. (2019). Heart rate variability categories of fluctuation amplitude and complexity: diagnostic markers of fetal development and its disturbances. Physiological Measurement, 40(6), 064002. DOI: 10.1088/1361-6579/ab205f
  22. Hutchins E.J., Kunttas E., Piacentino M.L., Howard A.G.A., Bronner M.E., & Uribe R.A. (2018). Migration and diversification of the vagal neural crest. Developmental Biology, 444, S98–S109
  23. Knaepen L., Pawluski J.L., Patijn J., van Kleef M., Tibboel D., & Joosten E.A. (2014). Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring: Perinatal Maternal Stress and Serotonin Signaling. Developmental Psychobiology, 56(5), 885–896
  24. Kozar M., Tonhajzerova I., Mestanik M., Matasova K., Zibolen M., Calkovska A., & Javorka K. (2018). Heart rate variability in healthy term newborns is related to delivery mode: a prospective observational study. BMC Pregnancy and Childbirth, 18(1), 264.
  25. Kruepunga N., Hikspoors J.P.J.M., Hülsman C.J.M., Mommen G.M.C., Köhler S.E., & Lamers W.H. (2020). Development of extrinsic innervation in the abdominal intestines of human embryos. Journal of Anatomy, 237(4), 655–671.
  26. Kumar N., Akangire G., Sullivan B., Fairchild K., & Sampath V. (2020). Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatric Research, 87(2), 210–220.
  27. Lavin J.P. (1982). The effects of epidural anesthesia on electronic fetal heart rate monitoring. Clinics in Perinatology, 9(1), 55–62.
  28. Moore K.L., Persaud T.V.N., & Torchia M.G. (2016). The developing human: clinically oriented embryology (10th edition). Philadelphia, PA: Elsevier.
  29. Morton S.U., & Brodsky D. (2016). Fetal Physiology and the Transition to Extrauterine Life. Clinics in Perinatology, 43(3), 395–407.
  30. Mulkey S.B., & du Plessis A. (2018). The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Seminars in Pediatric Neurology, 28, 29–37.
  31. Mulkey S.B., & du Plessis A.J. (2019). Autonomic nervous system development and its
  32. impact on neuropsychiatric outcome. Pediatric Research, 85(2), 120–126.
  33. Mulkey S.B., Kota S., Govindan R.B., Al-Shargabi T., Swisher C.B., Eze A., Hitchings
  34. L., Russo S., Herrera N., McCarter R., Maxwell G.L., Baker R., & du Plessis A.J. (2019). The effect of labor and delivery mode on electrocortical and brainstem autonomic function during neonatal transition. Scientific Reports, 9(1), 11020.
  35. Nguyen T.A., Chow T., Riggs W., & Rurak D. (2019). Postnatal outcomes in lambs exposed antenatally and acutely postnatally to fluoxetine. Pediatric Research, 85(7), 1032–1040.
  36. Parris K.M., Amabebe E., Cohen M.C., & Anumba D.O. (2021). Placental microbial–metabolite profiles and inflammatory mechanisms associated with preterm birth. Journal of Clinical Pathology, 74(1), 10–18.
  37. Patural H., Pichot V., Flori S., Giraud A., Franco P., Pladys P., Beuchée A., Roche F.,
  38. & Barthelemy J.-C. (2019). Autonomic maturation from birth to 2 years: normative values.
  39. Heliyon, 5(3), e01300.
  40. Peterson L.S., Stelzer I.A., Tsai A.S., Ghaemi M.S., Han X., Ando K., Winn V.D., Martinez N.R., Contrepois K., Moufarrej M.N., Quake S., Relman D.A., Snyder M.P., Shaw G.M., Stevenson D.K., Wong R.J., Arck P., Angst M.S., Aghaeepour N., & Gaudilliere B. (2020). Multiomic immune clockworks of pregnancy. Seminars in Immunopathology, 42(4), 397–412.
  41. Preston R., Crosby E.T., Kotarba D., Dudas H., & Elliott R.D. (1993). Maternal positioning affects fetal heart rate changes after epidural analgesia for labour. Canadian Journal of Anaesthesia, 40(12), 1136–1141.
  42. Ray-Griffith S.L., Wendel M.P., Stowe Z.N., & Magann E.F. (2018). Chronic pain during pregnancy: a review of the literature. International Journal of Women’s Health, 10, 153–164.
  43. Rivolta M.W., Stampalija T., Casati D., Richardson B.S., Ross M.G., Frasch M.G., Bauer A., Ferrazzi E., & Sassi R. (2014). Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model. PLoS ONE, 9(8), e104193.
  44. Roux S.G., Garnier N.B., Abry P., Gold N., & Frasch M.G. (2021). Distance to healthy cardiovascular dynamics from fetal heart rate scale-dependent features in pregnant sheep model of human labor predicts cardiovascular decompensation.
  45. Schlatterer S.D., Govindan R.B., Barnett S.D., Al-Shargabi T., Reich D.A., Iyer S., Hitchings L., Larry Maxwell G., Baker R., du Plessis A.J., & Mulkey S.B. (2022). Autonomic development in preterm infants is associated with morbidity of prematurity. Pediatric Research, 91(1), 171–177.
  46. Sheng J.A., Bales N.J., Myers S.A., Bautista A.I., Roueinfar M., Hale T.M., & Handa
  47. R.J. (2020). The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Frontiers in Behavioral Neuroscience, 14
  48. Tribollet E., Charpak S., Schmidt A., Dubois-Dauphin M., & Dreifuss J.J. (1989). Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. Journal of Neuroscience, 9(5), 1764–1773.
  49. Ulmer Yaniv A., Salomon R., Waidergoren S., Shimon-Raz O., Djalovski A., & Feldman R. (2021). Synchronous caregiving from birth to adulthood tunes humans’ social brain. Proceedings of the National Academy of Sciences, 118(14),
  50. van Bodegom M., Homberg J.R., & Henckens M.J.A.G. (2017). Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Frontiers in Cellular Neuroscience, 11: 87.
  51. Wallingford M.C., Benson C., Chavkin N.W., Chin M.T., & Frasch M.G. (2018). Placental Vascular Calcification and Cardiovascular Health: It Is Time to Determine How Much of Maternal and Offspring Health Is Written in Stone. Frontiers in Physiology, 9, 1044.
  52. Walusinski O. (2014). How yawning switches the default-mode network to the attentional network by activating the cerebrospinal fluid flow: How Yawning Switches the DMN to the Attentional Network. Clinical Anatomy, 27(2), 201–209.

Chiara Viglione, Marco Chiera, Stefano Vecchi, Francesco Cerritelli, Andrea Manzotti, Il sistema nervoso autonomico e il nervo vago all’inizio della vita in "PNEI REVIEW" 1/2022, pp 38-52, DOI: 10.3280/PNEI2022-001004