Integrated data management and business performances

Author/s Antonella Paolini
Publishing Year 2022 Issue 2022/2 Language Italian
Pages 10 P. 5-14 File size 149 KB
DOI 10.3280/MACO2022-002001
DOI is like a bar code for intellectual property: to have more infomation click here

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This editorial objective is to contribute to the debate on new approaches to corporate data management for the improvement not only of management control systems, but also of the related corporate performance. The theme of integrated data management embraces the interdisciplinary relationships that management controls - and the accounting function - should increasingly have with other disciplines; these relationships are permeated by both quantitative and qualitative approaches. Quantitative models include those created through data science and those that refer to mathematics, statistics, and information technology. Business models of data management combine qualitative and quantitative approaches. Furthermore, when dealing with other disciplines this models have to deal not only with "data management", but also with knowledge management, and this often creates barriers for diversity of scientific approach of the different branches of knowledge. Lastly, it should be reiterated that the data processing analyses involve not only internal data (accounting and non-accounting), but also external data, of a statistical, economic, and social nature, which affect the integrated management of accounting data from different disciplinary perspectives. Moreover, the data processing analysis also concern big data.

Keywords: Data management; Quantitative models; Data science; Knowledge management; Big data; Decision-making processes; Blockchain; Internet of things

  1. Abernethy M.A., Chua W.F., Grafton J., Mahama H. (2006). Accounting and control in health care: Behavioural, organisational, sociological and critical perspectives, in Chapman C.S., Hopwood A.G., Shields M.D. (eds.), Handbooks of management accounting research, Vol. 2, Oxford, Elsevier, UK, pp. 805-829.
  2. ALSaqa Z.H., Hussein A.I., Mahmood S.M. (2019). The impact of blockchain on accounting information systems, Journal of Information Technology Management, 11(3), pp. 62-80.
  3. Baghdasaryan V., Davtyan H., Grigoryan A., Khachatryan K. (2021), Comparison of econometric and deep learning approaches for credit default classification, Strategic Change, 30(3), pp. 257-268.
  4. Bellucci M., Nitti C., Chimirri C., Bagnoli L. (2019). Reporting on the social impact. Methodologies, indicators and three cases of experimentation in Tuscany, Management Control, 3, pp. 166-187. DOI: 10.3280/MACO2019-003009
  5. Bonsón E., Bednárová M. (2019). Blockchain and its implications for accounting and auditing, Meditari Accountancy Research, 27(5), pp. 725-740.
  6. Campanale C., Cinquini L. (2016). Emerging pathways of colonization in healthcare from participative approaches to management accounting, Critical Perspectives on Accounting, 39, 59-74.
  7. Capurro R., Galeotti M., Garzella S. (2018). Real-traditional world and “digital world”, business strategies and web intelligence: the future of control and information management, Management Control, 2 special issue, pp. 83-111.
  8. Castellano N., Felden C. (2021). Management Control Systems for Sustainability and Sustainability of Management Control Systems. Management Control, 2, pp. 5-10. DOI: 10.3280/MACO2021-002001
  9. Cinquini L., Tenucci A. (2010). Strategic management accounting and business strategy: a loose coupling?, Journal of Accounting and Organizational Change, 6(2), pp. 228-259.
  10. Confindustria digitale (2021). Il digitale in Italia 2021. Mercati, Dinamiche, Policy, 52ª edizione, luglio 2021,
  11. Cupertino S., Vitale G, Riccaboni A. (2018). The impact of Big Data on corporate planning & control activities. Il caso di studio di una PMI agricola italiana, Management Control, 3, pp. 59-86. DOI: 10.3280/MACO2018-003004
  12. Dicuonzo G., Dell’Atti V., Fusco A., Donofrio F. (2021). Big data and artificial intelligence for health system sustainability: The case of Veneto Region, Management Control, Suppl. 1, pp. 31-52. DOI: 10.3280/MACO2021-001-S1003
  13. Ferri L., Ginesti G., Spanò R. (2020). Blockchain e trasformazione delle professioni contabili: alcuni spunti di riflessione, in Lombardi R., Chiucchi M.S., Mancini D. (a cura di), Smart technologies, digitalizzazione e capitale intellettuale. Sinergie e opportunità, FrancoAngeli, Milano, pp. 176-192.
  14. Gietzmann M., Grossetti F. (2021), Blockchain and other distributed ledger technologies: Where is the accounting?, Journal of Accounting and Public Policy, 40(5).
  15. Gomaa A.A., Gomaa M.I., Stampone A. (2019). A transaction on the blockchain: An AIS perspective, intro case to explain transactions on the ERP and the role of the internal and external auditor, Journal of Emerging Technologies in Accounting, 16(1), pp. 47-64.
  16. Lombardi R., Trequattrini R., Schimperna F., Cano-Rubio M. (2021). The Impact of Smart Technologies on the Management and Strategic Control: A Structured Literature Review, Management Control, Suppl. 1, pp. 11-30. DOI: 10.3280/MACO2021-001-S1002
  17. Lorange P. (1993). Strategic Planning and Control, Blackwell Business, Cambridge, USA.
  18. Maffei M., Casciello R., Meucci F. (2021). Blockchain technology: uninvestigated issues emerging from an integrated view within accounting and auditing practices, Journal of Organizational Change Management, 34(2), pp. 462-476.
  19. Mancini D. (2018). Evoluzione e prospettive dei sistemi di informazione e di controllo, Management Control, Suppl. 2, pp. 5-14. DOI: 10.3280/MACO2018-SU2001
  20. Marchini P.L., Davoli L., Belli L., Medioli A. (2019). Internet of Things and Industry 4.0: a successful case study of digital manufacturing, Management Control, 3, pp. 11-34.
  21. McCallig J., Robb A., Rohde F. (2019). Establishing the representational faithfulness of financial accounting information using multiparty security, network analysis and a blockchain, International Journal of Accounting Information Systems, 33, pp. 47-58.
  22. Min J.H., Jeong C. (2009). A binary classification method for bankruptcy prediction, Expert Systems with Applications, 36(3), pp. 5256-5263.
  23. Möller K., Schäffer U., Verbeeten F. (2020). Digitalization in management accounting and control: an editorial, Journal of Management Control, 31(1/2), pp. 1-8.
  24. Montemari M., Nielsen C. (2021). Big data for business modeling: Towards the next generation of performance measurement systems? Management Control, Suppl. 1, pp. 5-10. DOI: 10.3280/MACO2021-001-S1001
  25. Nyland K., Pettersen I.J. (2004). The control gap: the role of budgets, accounting information and (non‐) decisions in hospital settings, Financial Accountability & Management, 20(1), pp. 77-102.
  26. Paolini A. (1993). Il controllo strategico: uno schema di analisi, Giuffrè, Milano.
  27. Oppi C., Campanale C., Cinquini L., Vagnoni E. (2019). Clinicians and accounting: A systematic review and research directions, Financial Accountability & Management, 35(3), pp. 290-312.
  28. Roszkowska P. (2020). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments, Journal of Accounting and Organizational Change, 17(2), pp. 164-196.
  29. Spraakman G., Sanchez-Rodriguez C., Tuck-Riggs C.A. (202A). Data analytics by management accountants, Qualitative Research in Accounting & Management, 18(1), pp. 127-147.

  • Intelligenza artificiale e accounting: le possibili relazioni Diego Valentinetti, Michele A. Reaa, in MANAGEMENT CONTROL 2/2023 pp.93
    DOI: 10.3280/MACO2023-002005

Antonella Paolini, Gestione integrata dei dati e performance aziendali in "MANAGEMENT CONTROL" 2/2022, pp 5-14, DOI: 10.3280/MACO2022-002001