Opportunities and risks in using big data to support management control systems: A multiple case study

Author/s Francesco Badia, Fabio Donato
Publishing Year 2022 Issue 2022/3 Language English
Pages 25 P. 39-63 File size 402 KB
DOI 10.3280/MACO2022-003003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The growing importance of big data in the current business context is a recognized phenomenon in managerial studies. Many such studies have been focused on possible changes from the use of big data analytics in business, and with reference to management control systems. However, the number and extent of studies attempting to analyze the opportunities and risks of using big data analytics in control systems from an empirical perspective appear rather limited. This work conducts case studies analyzing three companies that have used big data in their decision-making processes within management control systems. The empirical analysis shows how proper management of big data can represent a fundamental opportunity for the development of managerial control systems, with some possibilities not yet fully explored even by those who have already introduced big data analytics in these systems. Big data quality and privacy protection appear to be the profiles presenting the greatest opportunities for future study. Furthermore, new challenges seem to emerge for accountants and controllers, who now are called to a new approach regarding how they should interpret their professional roles.

Keywords: Big data analytics, Decision-making, Planning and control, Datafication, Business intelligence, Digitization

  1. Akter S., Wamba S.F., Gunasekaran A., Dubey R., Childe S.J. (2016), How to improve firm performance using big data analytics capability and business strategy alignment?, International Journal of Production Economics, 182, pp. 113-131. DOI: 10.1016/J.IJPE.2016.08.018
  2. Alahakoon D., Wijenayake P. (2017), Leveraging big data for organizational performance management and control, in E. Harris (Ed.), The Routledge Companion to Performance Management and Control (pp. 139-155), London, Routledge. DOI: 10.4324/9781315691374-8
  3. Alvesson M., Sveningsson S. (2003), Good Visions, Bad Micro-management and Ugly Ambiguity: Contradictions of (Non-)Leadership in a Knowledge-Intensive Organization, Organization Studies, 24(6), pp. 961-988. DOI: 10.1177/0170840603024006007
  4. Andreassen R.I. (2020), Digital technology and changing roles: a management accountant’s dream or nightmare?, Journal of Management Control, 31(3), pp. 209-238. DOI: 10.1007/S00187-020-00303-2/TABLES/1
  5. Ardito L., Scuotto V., Del Giudice M., Messeni Petruzzelli A. (2019), A bibliometric analysis of research on Big Data analytics for business and management, Management Decision, 57(8), pp. 1993-2009. DOI: 10.1108/MD-07-2018-0754/FULL/PDF
  6. Awan U., Shamim S., Khan Z., Zia N.U., Shariq S.M., Khan M.N. (2021), Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance, Technological Forecasting and Social Change, 168, 120766. DOI: 10.1016/J.TECHFORE.2021.120766
  7. Aykroyd R.G., Leiva V., Ruggeri F. (2019), Recent developments of control charts, identification of big data sources and future trends of current research, Technological Forecasting and Social Change, 144, pp. 221-232. DOI: 10.1016/J.TECHFORE.2019.01.005
  8. Batistič S., van der Laken P. (2019), History, Evolution and Future of Big Data and Analytics: A Bibliometric Analysis of Its Relationship to Performance in Organizations, British Journal of Management, 30(2), pp. 229-251. DOI: 10.1111/1467-8551.12340
  9. Bertei M., Marchi L., Buoncristiani D. (2015), Exploring Qualitative Data: The use of Big Data technology as support in strategic decision-making, International Journal of Digital Accounting Research, 15(July), pp. 99-126.
  10. Brown B., Chui M., Manyika J. (2011), Are you ready for the era of ‘big data’? McKinsey Quarterly. -- https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/are-you-ready-for-the-era-of-big-data. Accessed 17 February 2022.
  11. Cappelli A., Cavallini I. (2021), The Potential of Big Data Analysis in the Shipbuilding Industry: A Way of Increasing Competitiveness, Management Control, Suppl. 1, pp. 53-74. DOI: 10.3280/MACO2021-001-S1004
  12. Castellano N., Presti C., Del Gobbo R. (2017), Employing Big Data & Analytics in Decision-Making: Factors Affecting Managers’ Trustworthiness, in Proceedings of the 11th European Conference on Information Systems Management, ECISM 2017 (pp. 37-46). Academic Conferences and Publishing Limited.
  13. Gupta M., George J.F. (2016), Toward the development of a big data analytics capability. Information & Management, 53(8), pp. 1049-1064. DOI: 10.1016/J.IM.2016.07.004
  14. Che D., Safran M., Peng Z. (2013), From big data to big data mining: Challenges, issues, and opportunities. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7827 LNCS, pp. 1-15. DOI: 10.1007/978-3-642-40270-8_1/COVER
  15. Chen H., Chiang R.H.L., Storey V.C. (2012), Business intelligence and analytics: From big data to big impact, MIS Quarterly: Management Information Systems, 36(4), pp. 1165-1188. DOI: 10.2307/41703503
  16. Davenport T.H. (2014), How strategists use “big data” to support internal business decisions, discovery and production. Strategy and Leadership, 42(4), pp. 45-50. DOI: 10.1108/SL-05-2014-0034/FULL/PDF
  17. Debortoli S., Müller O., vom Brocke J. (2014), Comparing Business Intelligence and Big Data Skills. Business & Information Systems Engineering, 6(5), pp. 289-300. DOI: 10.1007/S12599-014-0344-2
  18. Demirkan H., Delen D. (2013), Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud, Decision Support Systems, 55(1), pp. 412-421. DOI: 10.1016/J.DSS.2012.05.048
  19. Dicuonzo G., Donofrio F., Fusco A., Dell’Atti V. (2021), Big data and artificial intelligence for health system sustainability: The case of Veneto Region, Manangement Control, Suppl. 1, pp. 31-52. DOI: 10.3280/MACO2021-001-S1003
  20. Diebold F.X. (2012), On the Origin(s) and Development of the Term “Big Data” (No. 12-037). PIER Working Paper.
  21. Eisenhardt K.M. (1989), Building Theories from Case Study Research, Academy of Management Review, 14(4), pp. 532-550. DOI: 10.2307/258557
  22. Eisenhardt K.M., Graebner M.E. (2007), Theory Building From Cases: Opportunities And Challenges. Academy of Management Journal, 50(1), pp. 25-32. DOI: 10.5465/AMJ.2007.24160888
  23. Erevelles S., Fukawa N., Swayne L. (2016), Big Data consumer analytics and the transformation of marketing, Journal of Business Research, 69(2), pp. 897-904. DOI: 10.1016/J.JBUSRES.2015.07.001
  24. Fosso Wamba S., Akter S., Edwards A., Chopin G., Gnanzou D. (2015), How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study, International Journal of Production Economics, 165, pp. 234-246. DOI: 10.1016/J.IJPE.2014.12.031
  25. Fredriksson C. (2018), Big data creating new knowledge as support in decision-making : practical examples of big data use and consequences of using big data as decision support. Journal of Decision Systems, 0125, pp. 1-18. DOI: 10.1080/12460125.2018.1459068
  26. Frisk J.E., Bannister F. (2017), Improving the use of analytics and big data by changing the decision-making culture: A design approach, Management Decision, 55(10), pp. 2074-2088. DOI: 10.1108/MD-07-2016-0460/FULL/PDF
  27. Ghasemaghaei M., Calic G. (2020), Assessing the impact of big data on firm innovation performance: Big data is not always better data, Journal of Business Research, 108, pp. 147-162. DOI: 10.1016/J.JBUSRES.2019.09.062
  28. Green S., McKinney E., Heppard K., Garcia L. (2018), Big Data, digital demand and decision-making, International Journal of Accounting and Information Management, 26(4), pp. 541-555. DOI: 10.1108/IJAIM-02-2017-0019/FULL/PDF
  29. Gunasekaran A., Papadopoulos T., Dubey R., Wamba S.F., Childe S.J., Hazen B., Akter S. (2017), Big data and predictive analytics for supply chain and organizational performance, Journal of Business Research, 70, pp. 308-317. DOI: 10.1016/J.JBUSRES.2016.08.004
  30. Günther W.A., Rezazade Mehrizi M.H., Huysman M., Feldberg F. (2017), Debating big data: A literature review on realizing value from big data, The Journal of Strategic Information Systems, 26(3), pp. 191-209. DOI: 10.1016/J.JSIS.2017.07.003
  31. Gupta S., Justy T., Kamboj S., Kumar A., Kristoffersen E. (2021), Big data and firm marketing performance: Findings from knowledge-based view, Technological Forecasting and Social Change, 171, 120986. DOI: 10.1016/J.TECHFORE.2021.120986
  32. Hazen B.T., Boone C.A., Ezell J.D., Jones-Farmer L.A. (2014),Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications, International Journal of Production Economics, 154, pp. 72-80. DOI: 10.1016/J.IJPE.2014.04.018
  33. Heiland P. (2011), If You Have Too Much Data, then “Good Enough” Is Good Enough. Queue, 9(5), pp. 40-50. DOI: 10.1145/1978862.1988603
  34. Janssen M., van der Voort H., Wahyudi A. (2017), Factors influencing big data decision-making quality, Journal of Business Research, 70, pp. 338-345. DOI: 10.1016/J.JBUSRES.2016.08.007
  35. Jin X., Wah B.W., Cheng X., Wang Y. (2015), Significance and Challenges of Big Data Research. Big Data Research, 2(2), pp. 59-64. DOI: 10.1016/J.BDR.2015.01.006
  36. Laney D. (2001). 3-D Data Management: Controlling Data Volume, Velocity and Variety. -- http://goo.gl/Bo3GS.
  37. Lavalle S., Lesser E., Shockley R., Hopkins M.S., Kruschwitz N. (2011), Big Data, Analytics and the Path From Insights to Value, MIT Sloan Management Review, 52(2), pp. 20-31.
  38. Loebbecke C., Picot A. (2015), Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda, The Journal of strategic Information Systems, 24(3), pp. 149-157. DOI: 10.1016/J.JSIS.2015.08.002
  39. Mancini D. (2010), Il sistema informativo e di controllo relazionale per il governo della rete di relazioni collaborative d’azienda, Milano, Giuffrè.
  40. Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C., Hung Byers A. (2011), Big data: The next frontier for innovation, competition, and productivity, McKinsey. -- https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data the-next-frontier-for-innovation. Accessed 18 February 2022.
  41. Marchi L. (1993). I sistemi informativi aziendali, Milano, Giuffré.
  42. Mayer-Schönberger V., Cukier K. (2013), Big data: A revolution that will transform how we live, work, and think, Boston, Eamon Dolan.
  43. Mcafee A., Brynjolfsson E. (2012), Spotlight on Big Data Big Data: The Management Revolution. Harvard Business Review, (October), pp. 1-9. -- http://tarjomefa.com/wp-content/uploads/2017/04/6539-English-TarjomeFa-1.pdf.
  44. Mikalef P., Boura M., Lekakos G., Krogstie J. (2019), Big data analytics and firm performance: Findings from a mixed-method approach, Journal of Business Research, 98, pp. 261-276. DOI: 10.1016/J.JBUSRES.2019.01.044
  45. Montemari M., Nielsen C. (2021), Big data for business modeling: Towards the next generation of performance measurement systems?, Management Control, Suppl. 1., pp. 5-10. DOI: 10.3280/MACO2021-001-S1001
  46. Nambisan S., Lyytinen K., Majchrzak A., Song M. (2017), Digital innovation management: Reinventing innovation management research in a digital world. MIS Quarterly: Management Information Systems, 41(1), pp. 223-238. DOI: 10.25300/MISQ/2017/411.03
  47. Newell S., Marabelli M. (2017), Datification in action: Diffusion and consequences of algorithmic decision-making, in R. D. Galliers & M.-K. Stein (Eds.), The Routledge Companion to Management Information Systems (pp. 403-415). London: Routledge. DOI: 10.4324/9781315619361-30
  48. Nisar Q.A., Nasir N., Jamshed S., Naz S., Ali M., Ali S. (2020), Big data management and environmental performance: role of big data decision-making capabilities and decision-making quality, Journal of Enterprise Information Management, 34(4), pp. 1061-1096. DOI: 10.1108/JEIM-04-2020-0137/FULL/PDF
  49. O’Neill C. (2016), Weapons of math destruction. How big data increases inequality and threatens democracy, New York, Crown.
  50. Oesterreich T.D., Teuteberg F. (2019), The role of business analytics in the controllers and management accountants’ competence profiles: An exploratory study on individual-level data, Journal of Accounting and Organizational Change, 15(2), pp. 330-356. DOI: 10.1108/JAOC-10-2018-0097/FULL/PDF
  51. Petrosino A., Mancini D., Garzella S., Lamboglia R. (2018), La Business Intelligence e la Business Analytics nell’era dei Big Data: una analisi della letteratura, Management Control, 3, pp. 31-58. DOI: 10.3280/MACO2018-003003
  52. Puaschunder J.M. (2021), Data Fiduciary in Order to Alleviate Principal-Agent Problems in the Artificial Big Data Age, in K. R. Balachandran (Ed.), Information for Efficient Decision Making. Big Data, Blockchain and Relevance (pp. 41-90). Singapore, World Scientific Publishing Company.
  53. Qu S.Q., Dumay J. (2011), The qualitative research interview. Qualitative Research in Accounting & Management, 8(3), 238-264. DOI: 10.1108/11766091111162070
  54. Russom P. (2011), Big Data Analytics. TDWI Best Practices Report. DOI: 10.1017/9781108566506.005
  55. Scapens R.W. (2004), Doing Case Study Research. In C. Humphrey & B. Lee (Eds.), The real life guide to accounting research. A Behind-the-Scenes View of Using Qualitative Research Methods (pp. 257-279), Oxford: Elsevier.
  56. Schmitt E. (2020), Big Data: An Art of Decision Making, London, John Wiley & Sons.
  57. Sivarajah U., Kamal M.M., Irani Z., Weerakkody V. (2017), Critical analysis of Big Data challenges and analytical methods, Journal of Business Research, 70, pp. 263-286. DOI: 10.1016/J.JBUSRES.2016.08.001
  58. Stake R.E. (2006), Multiple case study analysis, New York, The Guilford Press.
  59. Visani F. (2017), Applying business analytics for performance measurement and management. The case study of a software company, Management Control, 2, pp. 89-123. DOI: 10.3280/MACO2017-002006
  60. Vitale G., Cupertino S., Riccaboni A. (2020), Big data and management control systems change: the case of an agricultural SME, Journal of Management Control, 31(1-2), 123-152. DOI: 10.1007/S00187-020-00298-W/FIGURES/7
  61. Warren J.D., Moffitt K.C., Byrnes P. (2015), How Big Data Will Change Accounting. Accounting Horizons, 29(2), pp. 397-407. DOI: 10.2308/ACCH-51069
  62. Weiss S.M., Indurkhya N. (1998). Predictive data mining. A practical guide, San Francisco, Morgan Kaufmann.
  63. Wenzel R., Van Quaquebeke N. (2017), The Double-Edged Sword of Big Data in Organizational and Management Research: A Review of Opportunities and Risks. Organizational Research Methods, 21(3), pp. 548-591. DOI: 10.1177/1094428117718627
  64. Yin R.K. (2018), Case study research and application. Design and methods (Sixth.), Thousand Oaks, Sage.

Francesco Badia, Fabio Donato, Opportunities and risks in using big data to support management control systems: A multiple case study in "MANAGEMENT CONTROL" 3/2022, pp 39-63, DOI: 10.3280/MACO2022-003003