Strategy for the implementation of sustainable green fuels in Indonesia

Titolo Rivista ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Autori/Curatori Erwan Hermawan, Adiarso Adiarso, Sigit Setiadi, Dudi Hidayat
Anno di pubblicazione 2023 Fascicolo 2023/1
Lingua Inglese Numero pagine 37 P. 103-139 Dimensione file 355 KB
DOI 10.3280/EFE2023-001006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Global climate change has triggered the implementation of energy transition programs in many countries where renewable fuels have received great attention. While Indonesia successfully im- plements biofuels-based crude palm oil (CPO) such as biodiesel (up to B30). The program proceeds towards implementing other green fuels (such as green diesel, gasoline, and bio jet fuel). However, the current price of CPO (as a raw material) is highly fluctuated depending on the global market mechanism and mostly more expensive than the price of fossil fuels. This situation leads to an unattractive business of green fuels. So, the government’s policies are strongly required to make more attractive businesses with enhanced competitiveness of green fuels. A qualitative approach was conducted by using forum group discussion to gain information about the current status of biofuel policy in Indonesia and its challenges. The quantitative method was conducted by calculat- ing the economic analysis of palm oil-based energy crops and processing plants. The concept of integrated palm energy plantation was proposed based on the result. It may be a kind of integrated business entity owned by the government which aims at producing CPO and the following green fuels. Economic analysis shows that from the plantation side, the selling price of Fruit Fresh Bunch (FFB) is USD 0.068/kg with an IRR of 12.6%. While in the CPO processing industry, using the FFB price of USD 0.082/kg obtained an IRR of 14.4%. This result shows promising results from the calculation, keeps the sustainability of raw material supply and enhances the competitiveness of green fuels.

Keywords:green fuels, strategic policy, energy crops, sustainability of supply

Jel codes:Q48, Q14, Q54

  1. Acar, C., Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrog. Energy, 39, 1-12.
  2. Acaroglu, M., Baser, E., Aydogan, H., Canli, E. (2022). A new energy crop onopordum spp.: A research on biofuel properties. Energy 261, 125305.
  3. Adjei-Nsiah, S., Zu, A. K. S., Nimoh, F. (2012). Technological and Financial Assessment of Small Scale Palm Oil Production in Kwaebibrem District, Ghana. J. Agric. Sci. 4, p111.
  4. Agostini, A., Serra, P., Giuntoli, J., Martani, E., Ferrarini, A., Amaducci, S. (2021). Biofuels from perennial energy crops on buffer strips: A win-win strategy. J. Clean. Prod., 297, 126703.
  5. Amanah, F., Yunanto, T. (2021). Oil palm plantation in ex-coal mined site: A case study in East Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci., 918, 012049. DOI: 10.1088/1755-1315/918/1/012049
  6. Aransiola, E. F., Ehinmitola, E. O., Adebimpe, A. I., Shittu, T. D., Solomon, B. O. (2019). Prospects of biodiesel feedstock as an effective ecofuel source and their challenges, in: Advances in Eco-Fuels for a Sustainable Environment. Elsevier, pp. 53-87. DOI: 10.1016/B978-0-08-102728-8.00003-6
  7. Argus Media Group, 2021. Argus Biofuels Outlook.
  8. Arvidsson, R., Persson, S., Fröling, M., Svanström, M. (2011). Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J. Clean. Prod., 19, 129-137.
  9. Aziz, M., Oda, T., Kashiwagi, T. (2015). Design and Analysis of Energy-Efficient Integrated Crude Palm Oil and Palm Kernel Oil Processes. J. Jpn. Inst. Energy, 94, 143-150.
  10. Babu, D., Anand, R. (2019). Influence of fuel injection timing and nozzle opening pressure on a CRDI-assisted diesel engine fueled with biodiesel-diesel-alcohol fuel, in: Advances in Eco-Fuels for a Sustainable Environment. Elsevier, pp. 353-390. DOI: 10.1016/B978-0-08-102728-8.00013-9
  11. Bampaou, M., Panopoulos, K. D., Seferlis, P., Voutetakis, S. (2022). Evaluation of novel hy- drogen integration options in bio-oils introduction to petrochemical refineries. Energy, 254, 124353.
  12. Baral, N. R., Neupane, P., Ale, B. B., Quiroz-Arita, C., Manandhar, S., Bradley, T. H. (2020). Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renew. Sustain. Energy Rev., 120, 109619.
  13. Benny, R., Tahlim, S. (2010). Impact and Future Perspectives of Fertilizer Policy in Indonesia. Analisis Kebijakan Pertanian, pp. 193-205.
  14. Boutesteijn, C., Drabik, D., Venus, T. J. (2017). The interaction between EU biofuel policy and first- and second-generation biodiesel production. Ind. Crops Prod., 106, 124-129.
  15. BPS (2022). Export and Import. -- https://www.bps.go.id/subject/8/ekspor-impor.html# subjekViewTab3 (accessed 7.4.2022).
  16. Bunzel, K., Kattwinkel, M., Schauf, M., Thrän, D. (2014). Energy crops and pesticide con- tamination: Lessons learnt from the development of energy crop cultivation in Germany. Biomass Bioenergy, 70, 416-428.
  17. Cervelli, E., Scotto di Perta, E., Pindozzi, S. (2020). Energy crops in marginal areas: Scenario- based assessment through ecosystem services, as support to sustainable development. Ecol. Indic., 113, 106180.
  18. Congress Research Service (2022). The Renewable Fuel Standard (RFS): An Overview. USA. -- https://crsreports.congress.gov/.
  19. Chaganti, V. N., Ganjegunte, G., Niu, G., Ulery, A., Enciso, J. M., Flynn, R., Meki, N., Kiniry,
  20. J. R. (2021). Yield response of canola as a biofuel feedstock and soil quality changes under treated urban wastewater irrigation and soil amendment application. Ind. Crops Prod., 170, 113659.
  21. Chau, K., Djire, A., Khan, F. (2022). Review and analysis of the hydrogen production tech- nologies from a safety perspective. Int. J. Hydrog. Energy, 47, 13990-14007.
  22. Chia, S. R., Nomanbhay, S., Ong, M. Y., Shamsuddin, A. H. B., Chew, K. W., Show, P. L. (2022). Renewable diesel as fossil fuel substitution in Malaysia: A review. Fuel, 314, 123137.
  23. Christensen, E., McCormick, R. L. (2014). Long-term storage stability of biodiesel and bio- diesel blends. Fuel Process. Technol., 128, 339-348.
  24. Daemeter Consulting (2013). Fertilizer and Oil Palm in Indonesia: An overview of the indus- try and challenges for small-scale oil palm farmer applications. Daemeter Consulting, Bogor, Indonesia.
  25. Dale, B. E. (2015). A New Industry Has Been Launched: The Cellulosic Biofuels Ship (Fi- nally) Sails. Biofuels Bioprod. Biorefining, 9, 1-3.
  26. Dannenberg, A., Mennel, T., Moslener, U. (2008). What does Europe pay for clean energy? Review of macroeconomic simulation studies. Energy Policy, 36, 1318-1330.
  27. Das, S., 2020. The National Policy of biofuels of India – A perspective. Energy Policy 143, 111595.
  28. Dauber, J., Miyake, S. (2016). To integrate or to segregate food crop and energy crop cultiva- tion at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc., 6, 25.
  29. de Souza, T. A. Z., Pinto, G. M., Julio, A. A. V., Coronado, C. J. R., Perez-Herrera, R., Siqueira, B. O. P. S., da Costa, R. B. R., Roberts, J. J., Palacio, J. C. E. (2022). Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. Renew. Sustain. Energy Rev., 153, 111755.
  30. Dharmawan, A., Fauzi, A., Putri, E., Pacheco, P., Dermawan, A., Nuva, N., Amalia, R., Su- daryanti, D. (2020). Bioenergy Policy: The Biodiesel Sustainability Dilemma in Indone- sia. Int. J. Sustain. Dev. Plan., 15, 537-546.
  31. Didy S., Trikoesoemaningtyas, Nurul K. (2009). Increasing Agriculture Production in Mar- ginal Land: Crop Improvement Approach, in: Agriculture and Livestock Production Based on Agroindustry. Presented at the International Conference on Agriculture anf Food Production. IPB University, Indonesia.
  32. Ebadian, M., van Dyk, S., McMillan, J. D., Saddler, J. (2020b). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906.
  33. Ebadian, M., van Dyk, S., McMillan, J.D., Saddler, J. (2020a). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906.
  34. Elgharbawy, A. S., Sadik, Wagih.A., Sadek, O. M., Kasaby, M. A. (2021). A Review on Bi- odiesel Feedstocks and Production Technologies. J. Chil. Chem. Soc., 66, 5098-5109. DOI: 10.4067/S0717-97072021000105098
  35. Ewing, M., Msangi, S. (2009). Biofuels production in developing countries: assessing tradeoffs in welfare and food security. Environ. Sci. Policy, 12, 520-528.
  36. FAO (Ed.) (2008). Biofuels: prospects, risks and opportunities. The state of food and agricul- ture. Rome: FAO.
  37. Faridha, K. O., Zulkarnain, D. S., Ayuta F. L., Hani T. S., Tri A., I Gusti N. A. S. P. N. (2021). Biodiesel, A Long Trail of a Struggle. MEMR Research and Development Agency, Ja- karta-Indonesia.
  38. Federal Ministry of Transport (2013). Building and Urban Development (BMVBS) Germany – The Mobility and Fuels Strategy of the German Government (MFS).
  39. Festel, G., Würmseher, M., Rammer, C., Boles, E., Bellof, M. (2014). Modelling production cost scenarios for biofuels and fossil fuels in Europe. J. Clean. Prod., 66, 242-253.
  40. Frost and Sullivan (2021). The European, The Middle East and African oils & fats market for food applications, forecast to 2021. -- https://store.frost.com/the-european-the-middle- east-and-african-oils-fats-market-for-food-applications-forecast-to2021.html (accessed on July 22).
  41. Gathaara, G. N., Glumac, E. L., Felker, P. (1991). Three-year growth studies of Leucaena leucocephala (1094) and L. pulverulenta (1001) at two spacings in Texas. For. Ecol. Manag., 40, 189-198. DOI: 10.1016/0378-1127(91)90038-W
  42. Gaurav, A., Leite, M. L., Ng, F. T. T., Rempel, G. L. (2013). Transesterification of Triglyc- eride to Fatty Acid Alkyl Esters (Biodiesel): Comparison of Utility Requirements and Capital Costs between Reaction Separation and Catalytic Distillation Configurations. En- ergy Fuels, 27, 6847-6857.
  43. Giuntoli, J. (2018). Advanced Biofuel policies in select EU member states: 2018 update. In- ternational Council on Clean Transportation.
  44. Głąb, J. (2016). Sediment as a Problem in Fame Storage. J. KONBiN, 39, 97-118.
  45. Goh, B. H. H., Chong, C. T., Ong, H. C., Milano, J., Shamsuddin, A. H., Lee, X. J., Ng, J.-H. (2022). Strategies for fuel property enhancement for second-generation multi-feedstock biodiesel. Fuel, 315, 123178.
  46. Government of Indonesia (2014). Government Regulation No. 79/2014 Concerning National Energy Policy.
  47. Guan, Z., Oh, J. (2018). United States Biofuel Policies: Overview and Discussion 4. Gutiérrez-Antonio, C., Soria Ornelas, M. L., Gómez-Castro, F. I., Hernández, S. (2018). In-
  48. tensification of the hydrotreating process to produce renewable aviation fuel through re- active distillation. Chem. Eng. Process. – Process Intensif., 124, 122-130.
  49. Halimatussadiah, A., Nainggolan, D., Yui, S., Moeis, F. R., Siregar, A. A. (2021). Progressive biodiesel policy in Indonesia: Does the Government’s economic proposition hold? Renew. Sustain. Energy Rev., 150, 111431.
  50. Hao, H., Liu, Z., Zhao, F., Ren, J., Chang, S., Rong, K., Du, J. (2018). Biofuel for vehicle use in China: Current status, future potential and policy implications. Renew. Sustain. Energy Rev., 82, 645-653.
  51. Hattori, T., Morita, S. (2010). Energy Crops for Sustainable Bioethanol Production; Which, Where and How? Plant Prod. Sci., 13, 221-234.
  52. Herdiansyah, H., Negoro, H. A., Rusdayanti, N., Shara, S. (2020). Palm oil plantation and cultivation: Prosperity and productivity of smallholders. Open Agric., 5, 617-630.
  53. Hingsamer, M., Jungmeier, G. (2019). Biorefineries, in: The Role of Bioenergy in the Bioe- conomy. Elsevier, pp. 179-222. DOI: 10.1016/B978-0-12-813056-8.00005-4
  54. IEA (2015). Synthesis, Characterization, and Use of Hydro-Treated Oils and Fats for Engine Operation. US.
  55. IEA (2020). Advanced Biofuels – Potential for Cost Reduction. US.
  56. IESR (2021). Critical review on the biofuel development policy in Indonesia. Indonesia. Indonesia Oil Palm Plantations Fund Management Agency (2022). The Commission IV Hear-ing Meeting of the DPR RI.
  57. Indonesian Biofuel Producers Association (2021). The Role of the Mandatory Biodiesel Pro- gram in Supporting the Acceleration of the Realization of Renewable Energy Programs.
  58. Indonesian Statistics (2020). Indonesian Oil Palm Statistics. Jakarta.
  59. International Institute for Sustainable Development (2012). Biofuels – At What Cost? Man- dating ethanol and biodiesel consumption in Germany. Geneva, Switzerland.
  60. IRENA (2018). Hydrogen from renewable power: Technology outlook for the energy transi- tion. International Renewable Energy Agency. Abu Dhabi.
  61. IRENA (2020). Global renewables outlook energy transformation 2050. USA.
  62. Jacopo, G. (2018). Final recast Renewable Energy Directive for 2021-2030 in the European Union. Washington DC.
  63. Jafarihaghighi, F., Bahrami, H., Ardjmand, M., Mirzajanzadeh, M., Haghighi, B. J., Mahdavi,
  64. A. (2022). Comparing among second, third, and fourth generations (genetically modified) of biodiesel feedstocks from the perspective of engine, exhaust gasses and fatty acid: Comparative assessment. Clean. Chem. Eng., 2, 100025.
  65. Jiang, W., Zipp, K. Y., Jacobson, M. (2018). Economic assessment of landowners’ willing- ness to supply energy crops on marginal lands in the northeastern of the United States. Biomass Bioenergy, 113, 22-30.
  66. Jones, D. S. J., Pujadó, P. R. (2015). Petroleum Refinery Planning and Economics, in: Treese,
  67. S. A., Pujadó, P. R., Jones, D. S. J. (Eds.). Handbook of Petroleum Processing. Springer International Publishing, Cham, pp. 685-786. DOI: 10.1007/978-3-319-14529-7_28
  68. Karp, A., Richter, G. M. (2011). Meeting the challenge of food and energy security. J. Exp. Bot., 62, 3263-3271.
  69. Ketabchi, E., Pastor-Perez, L., Reina, T. R., Arellano-Garcia, H. (2019). Integration of Fossil Fuel-based with Bio-based Industries: The Use of Waste Streams and Biomass to Produce Syngas and Added Value Products. IFAC-Pap., 52, 616-621.
  70. Khatiwada, D., Palmén, C., Silveira, S. (2021). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Biofuels, 12, 135-147. DOI: 10.1080/17597269.2018.1461520
  71. Kiefel, R., Lüthje, J. T. (2018). Conceptual Process Design: Production of Hydrotreated Veg- etable Oil as an Additive for Petro-Diesel. RWTH Aachen Univ. 15.
  72. Kim, D., Kim, S., Oh, S., No, S.-Y. (2014). Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel., 125, 36-43.
  73. Knápek, J., Králík, T., Vávrová, K., Valentová, M., Horák, M., Outrata, D. (2021). Policy implications of competition between conventional and energy crops. Renew. Sustain. En- ergy Rev., 151, 111618.
  74. Koçar, G., Civaş, N. (2013). An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev., 28, 900-916.
  75. Komarek, A. M., Drogue, S., Chenoune, R., Hawkins, J., Msangi, S., Belhouchette, H., Flich- man, G. (2017). Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi. Agric. Syst., 154, 168-178.
  76. Kuchler, M., Linnér, B.-O. (2012). Challenging the food vs. fuel dilemma: Genealogical anal- ysis of the biofuel discourse pursued by international organizations. Food Policy, 37, 581-588.
  77. Laurent, A., Pelzer, E., Loyce, C., Makowski, D. (2015). Ranking yields of energy crops: A meta-analysis using direct and indirect comparisons. Renew. Sustain. Energy Rev., 46, 41-50.
  78. Li, Y., Shi, X., Phoumin, H. (2021). A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. Int. J. Hy- drog. Energy, S0360319921040829.
  79. Listiani Dewi, E. (2022). Biobased Renewable Hydrogen Energy. Presented on “Indonesian Current Research in Developing Indonesian Bioenergy Industry” workshop.
  80. Lorenzi, G., Mignini, L., Venezia, B., Silva, C., Santarelli, M. (2019). Integration of high- temperature electrolysis in an HVO production process using waste vegetable oil. Energy Procedia, 158, 2005-2011.
  81. Maltsoglou, I., Kojakovic, A., Rincón, L. E., Felix, E., Branca, G., Valle, S., Gianvenuti, A., Rossi, A., Thulstrup, A., Thofern, H. (2015). Combining bioenergy and food security: An approach and rapid appraisal to guide bioenergy policy formulation. Biomass Bioenergy, 79, 80-95.
  82. Man, E. L. Y., Baharum, A. (2011). A Qualitative Approach of Identifying Major Cost Influ- encing Factors in Palm Oil Mills and the Relations towards Production Cost of Crude Palm Oil. Am. J. Appl. Sci., 8, 441-446.
  83. Marin, G. (2014). Do eco-innovations harm productivity growth through crowding out? Re- sults of an extended CDM model for Italy. Res. Policy, 43, 301-317.
  84. Mata, T. M., Martins, A. A., Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14, 217-232.
  85. Matsuoka, S., Kennedy, A. J., Santos, E. G. D. dos, Tomazela, A. L., Rubio, L. C. S. (2014). Energy Cane: Its Concept, Development, Characteristics, and Prospects. Adv. Bot., 1-13. DOI: 10.1155/2014/597275
  86. Mayasari, F., Dalimi, R., Purwanto, W. W. (2019). Projection Of Biodiesel Production In Indonesia To Achieve National Mandatory Blending In 2025 Using System Dynamics Modeling. Int. J. Energy Econ. Policy, 9, 421-429.
  87. Meesters, K., Corré, W., Conijn, S., Patel, M., Bos, H. (2012). Sustainability aspects of bi- obased products: comparison of different crops and products from the vegetable oil plat- form. Wageningen UR Food & Biobased Research, institute within the legal entity Sticht- ing Dienst Landbouwkundig Onderzoek.
  88. Merzic, A., Turkovic, N., Ikanovic, N., Lapandic, E., Kazagic, A., Music, M. (2022). Towards just transition of coal regions - Cultivation of short rotation copies and dedicated energy crops for biomass co-firing vs photo voltaic power plants. Energy Convers. Manag., X 15, 100267.
  89. Ministry of Agriculture (2022). Palm Oil Productivity -- www.pertanian.go.id (accessed 4.7.2022).
  90. Ministry of Energy and Mineral Resources (2021). Handbook of Energy and Economic Sta- tistics of Indonesia 2018. Ministry of Energy and Mineral Resources, Jakarta-Indonesia.
  91. Ministry of Energy Mineral and Resources, Ministry of Finance (2019). Indonesia’s Effort to Phase out and Rationalise Its Fossil-Fuel Subsidies.
  92. Ministry of Finance (2020). Pentingnya Peran PDF dalam Skema KPBU -- https://kpbu. kemenkeu.go.id/read/70-211/umum/kajian-opini-publik/pentingnya-peran-pdf-dalam-skema- kpbu (accessed 7.13.2022).
  93. Ministry of Trade (2022). Indonesia Trade Balance. Ministry of Trade.
  94. Muhammad Julian (2015). Multi Agro Gemilang Plantation (MAGP) akan bangun PKS di Kalimantan Barat -- https://newssetup.kontan.co.id/news/multi-agro-gemilang-plantation-magp-akan-bangun-pks-di-kalimantan-barat-1. accessed on July 2022.
  95. Murphy, D. J., Goggin, K., Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agric. Biosci., 2, 39.
  96. Neste (2020). Neste Renewable Diesel Handbook. Neste Proprietary publication.
  97. NextChem (2020). Biofuels: NextChem innovative proposition to drive the future of transpor- tation.
  98. Nikita P., Stephanie S., Adam C. (2019). The cost of supporting alternative jet fuels in the European Union. International Council on Clean Transportation. Working paper.
  99. Oil and Fats International (2021). EU BIODIESEL: Towards HVO -- https://www.ofimagazine. com/content-images/news/Biofuels-HVO-takes-off-in-Europe.pdf. accessed on August 2022.
  100. Osman, A. I., Qasim, U., Jamil, F., Al-Muhtaseb, A. H., Jrai, A. A., Al-Riyami, M., Al-Maawali, S., Al-Haj, L., Al-Hinai, A., Al-Abri, M., Inayat, A., Waris, A., Farrell, C., Maksoud, M. I. A. A., Rooney, D. W. (2021). Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renew. Sustain. Energy Rev., 152, 111677.
  101. Palacio-Ciro, S., Vasco-Correa, C. A. (2020). Biofuels policy in Colombia: A reconfiguration to the sugar and palm sectors? Renew. Sustain. Energy Rev., 134, 110316.
  102. Panoutsou, C., Germer, S., Karka, P., Papadokostantakis, S., Kroyan, Y., Wojcieszyk, M., Maniatis, K., Marchand, P., Landalv, I. (2021). Advanced biofuels to decarbonise Euro- pean transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Rev., 34, 100633.
  103. Pelemo, J., Inambao, F. L., Onuh, E. I. (2020). Potential of Used Cooking Oil as Feedstock for Hydroprocessing into Hydrogenation Derived Renewable Diesel: A Review. Int. J. Eng. Res. Technol., 13, 500. DOI: 10.37624/IJERT/13.3.2020.500-519
  104. Pertamina (2021). Fuel Ritail Price -- https://mypertamina.id/fuels-harga. Accessed on July 2022.
  105. Prussi, M., Panoutsou, C., Chiaramonti, D. (2022a). Assessment of the Feedstock Availability for Covering EU Alternative Fuels Demand. Appl. Sci., 12, 740.
  106. Prussi, M., Panoutsou, C., Chiaramonti, D. (2022b). Assessment of the Feedstock Availability for Covering EU Alternative Fuels Demand. Appl. Sci. 12, 740.
  107. Raab, M., Körner, R., Dietrich, R.-U. (2022). Techno-economic assessment of renewable hy- drogen production and the influence of grid participation. Int. J. Hydrog. Energy, S0360319922025903.
  108. Rahman, A., Dargusch, P., Wadley, D. (2021). The political economy of oil supply in Indo- nesia and the implications for renewable energy development. Renew. Sustain. Energy Rev., 144, 111027.
  109. Rahutomo, S., Fadli, M. L., Sutarta, E. S., Wiratmoko, D., Santoso, H., Ginting, E. N. (2006). How Much Fertilizer Does Indonesia Need for Oil Palm Plantation in The Next 5 Years. Int. Oil Palm Conf., 479-484.
  110. Rauf, A., Maqsood, M., Ahmad, A., Gondal, A. S. (2012). Yield And Oil Content of Sun- flower (Helianthus annuus L.) As Influenced by Spacing and Reduced Irrigation Condi- tion. J. Crop Prod., 1, 41-45.
  111. Rodríguez-Fernández, J., Hernández, J. J., Calle-Asensio, A., Ramos, Á., Barba, J. (2019). Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties. Energies, 12, 2034.
  112. Rubashkina, Y., Galeotti, M., Verdolini, E. (2015). Environmental regulation and competi- tiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sec- tors. Energy Policy, 83, 288-300.
  113. Sahoo, K., Khatri, P., Kanwar, A., Singh, H. P., Mani, S., Bergman, R., Runge, T., Kumar, D. (2022). Integrated environmental and economic assessments of producing energy crops with cover crops for simultaneous use as biofuel feedstocks and animal fodder. Ind. Crops Prod., 179, 114681.
  114. Saravanan, A. P., Pugazhendhi, A., Mathimani, T. (2020a). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel, 272, 117635.
  115. Saravanan, A. P., Pugazhendhi, A., Mathimani, T. (2020b). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel, 272, 117635.
  116. Schmidt, J. H. (2010). Comparative life cycle assessment of rapeseed oil and palm oil. Int. J. Life Cycle Assess., 15, 183-197.
  117. Schnuelle, C., Wassermann, T., Fuhrlaender, D., Zondervan, E. (2020). Dynamic hydrogen production from PV & wind direct electricity supply – Modeling and techno-economic assessment. Int. J. Hydrog. Energy, 45, 29938-29952.
  118. Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Chong, W. T. (2014). Biodiesel Conversion from High FFA Crude Jatropha Curcas, Calophyllum Inophyllum and Ceiba Pentandra Oil. Energy Procedia, 61, 480-483.
  119. Singh, D., Sharma, D., Soni, S. L., Sharma, S., Kumar Sharma, P., Jhalani, A. (2020). A re- view on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553.
  120. Soam, S., Börjesson, P. (2020). Considerations on Potentials, Greenhouse Gas, and Energy Performance of Biofuels Based on Forest Residues for Heavy-Duty Road Transport in Sweden. Energies, 13, 6701.
  121. Soam, S., Hillman, K. (2019). Factors influencing the environmental sustainability and growth of hydrotreated vegetable oil (HVO) in Sweden. Bioresour. Technol. Rep., 7, 100244.
  122. Subagya, F., Suwondo, E. (2018). CPO Yield Instability on Palm Oil Industry. J. Teknol. Ind.Has. Pertan., 23, 82.
  123. Suren Rangara (2021). 10 years of EU fuels policy increased EU’s reliance on unsustainable biofuels -- https://www.transportenvironment.org/discover/10-years-of-eu-fuels-policy- increased-eus-reliance-on-unsustainable-biofuels/, accessed on July 2022.
  124. Suroso, D. S. A., Setiawan, B., Pradono, P., Iskandar, Z. S., Hastari, M. A. (2022). Revisiting the role of international climate finance (ICF) towards achieving the nationally deter- mined contribution (NDC) target: A case study of the Indonesian energy sector. Environ. Sci. Policy, 131, 188-195.
  125. Svatoňová, T., Herák, D., Kabutey, A. (2015). Financial Profitability and Sensitivity Analysis of Palm Oil Plantation in Indonesia. Acta Univ. Agric. Silvic. Mendel. Brun., 63, 1365- 1373.
  126. Thapa, H. B., Gautam, S. K. (1970). Growth performance of Tectona grandis in the western Terai of Nepal. Banko Janakari, 15, 6-12.
  127. Towler, G., Sinnott, R. K. (2022). Chemical engineering design: principles, practice, and economics of plant and process design (Third Edition). Amsterdam: Butterworth-Heine- mann.
  128. Traction Energy Asia (2020). Assessment of The Palm Oil Replanting Program to Support Indonesia’s Green Fuel Policy.
  129. Tufaila, M., Alam, S., Leomo, S. (2014). Marginal Soil Management Strategy Efforts to Re- alize Sustainable Agriculture. Kendari: Unhalu Press.
  130. Turton R., Richard B., Wallace B. Whiting, Joseph S., Debangsu B. (2012). Analysis, Synthe- sis and Design of Chemical Processes. 3rd ed., Prentice Hall International Series in the Physical and Chemical Engineering Sciences. Prentice Hall, US.
  131. U.S Department of Energy (2022). Biodiesel Laws and Incentives in Federal -- https://afdc. energy.gov/fuels/laws/BIOD?state=US#:~:text=Fueling%20equipment%20for%20natural%20gas,not%20included%20in%20covered%20expenses. Accessed on August 2022.
  132. U.S. Energy Information Administration (2021). International Energy Outlook 2020. U.S. En- ergy Information Administration.
  133. UFOP (2020). Rapeseed: a Versatile Crop. Berlin.
  134. Ullmann, F. (2005). Ullmann’s chemical engineering and plant design. Weinheim, UK: Wiley-VCH.
  135. Valizadeh, J., Sadeh, E., Javanmard, H., Davodi, H. (2018). The effect of energy prices on energy consumption efficiency in the petrochemical industry in Iran. Alex. Eng. J., 57, 2241-2256.
  136. Vartiainen, E., Breyer, C., Moser, D., Román Medina, E., Busto, C., Masson, G., Bosch, E., Jäger-Waldau, A. (2022). True Cost of Solar Hydrogen. Sol. RRL, 6, 2100487.
  137. Vásquez, M. C., Martínez, A., Castillo, E. F., Silva, E. E. (2019). Holistic approach for sus- tainability enhancing of hydrotreated aviation biofuels, through life cycle assessment: A Brazilian case study. J. Clean. Prod., 237, 117796.
  138. Wahyu Krisdiarto, A., Sutiarso, L. (2016). Study on Oil Palm Fresh Fruit Bunch Bruise in Harvesting and Transportation to Quality. Makara J. Technol., 20, 67.
  139. Winnik, S. (2016). Corrosion Under Insulation (CUI) Guidelines (2nd ed.). Woodhead Pub- lishing, UK.
  140. Wirakusuma, G. (2020). Is Input Subsidy Still Useful for Indonesian Agriculture? an Empir- ical Review of Rice Productivity at The Household Level. Jurnal Ekonomi dan Pem- bangunan, 28, 12.
  141. Woiciechowski, A. L., Medeiros, A. B. P., Rodrigues, C., de Souza Vandenberghe, L. P., de Andrade Tanobe, V. O., Dall’Agnol, A., Gazzoni, D. L., Soccol, C. R. (2016). Feedstocks for Biofuels. In: Soccol, C. R., Brar, S. K., Faulds, C., Ramos, L. P. (Eds.). Green Fuels Technology, Green Energy and Technology. Springer International Publishing, Cham, pp. 15-39. DOI: 10.1007/978-3-319-30205-8_2
  142. World Bank (2022). Commodity Market -- https://www.worldbank.org/en/research/commodity- markets. Accessed on June 2022.
  143. Yacob, M. R., Kabir, I., Radam, A. (2015). Households Willingness to Accept Collection and Recycling of Waste Cooking Oil for Biodiesel Input in Petaling District, Selangor, Ma- laysia. Procedia Environ. Sci., 30, 332-337.
  144. Yang, M., Hong, Y., Yang, F. (2022). The effects of Mandatory Energy Efficiency Policy on resource allocation efficiency: Evidence from Chinese industrial sector. Econ. Anal. Pol- icy, 73, 513-524.
  145. Yang, P., Cai, X., Leibensperger, C., Khanna, M. (2021). Adoption of perennial energy crops in the US Midwest: Causal and heterogeneous determinants. Biomass Bioenergy, 155, 106275.
  146. Yanita, M., Napitupulu, D., Ernawati, H., Fauzia, G., Wahyuni, I. (2019). The performance of oil palm cultivation in Muaro Jambi District. IOP Conf. Ser. Earth Environ. Sci., 336, 012005. DOI: 10.1088/1755-1315/336/1/012005
  147. Zhang, A., Gao, J., Quan, J., Zhou, B., Lam, S. K., Zhou, Y., Lin, E., Jiang, K., Clarke, L. E.,
  148. Zhang, X., Yu, S., Kyle, G. P., Li, H., Zhou, S., Gao, S., Wang, W., Guan, Y. (2021). The implications for energy crops under China’s climate change challenges. Energy Econ., 96, 105103.

  • Effect of energy consumption on economic growth and sustainability: Panel evidence from PCSE and FGLS Titiksha Da, Debasis Chakraborty, in ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT 2/2024 pp.37
    DOI: 10.3280/EFE2024-002002
  • Optimized utilization of spent bleaching earth to enhance economic performance of integrated biodiesel-cooking oil plants Adiarso Adiarso, Erwan Hermawan, Ai Nelly, Danis E.P. Wicaksana, R. Agung Wijono, Ayu Lydi Ferabianie, Hari Setiawan, Sigit Setiadi, Ermawan D. Setiyadi, Lenggogeni, Sunartono, Ari Marsudi, Yanti R. Dewi, Saparudin, Isyalia D. Handayani, Kaseno Kaseno, in Case Studies in Chemical and Environmental Engineering 100784/2024 pp.100784
    DOI: 10.1016/j.cscee.2024.100784

Erwan Hermawan, Adiarso Adiarso, Sigit Setiadi, Dudi Hidayat, Strategy for the implementation of sustainable green fuels in Indonesia in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 1/2023, pp 103-139, DOI: 10.3280/EFE2023-001006