Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs

Journal title ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Author/s Samuel Carrara, Giacomo Marangoni
Publishing Year 2013 Issue 2013/1 Language English
Pages 34 P. 91-124 File size 871 KB
DOI 10.3280/EFE2013-001006
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The abatement of non-CO2 greenhouse gases (OGHG) has proved to be of par- amount importance for reaching global mitigation targets. The modeling of their abatement is normally carried out referring to marginal abatement cost (MAC) curves, which by now represent a standard approach for such an analysis. As no evolution scenarios are available to describe future mitigation opportunities for OGHGs, exogenous technical progress factors (TP) are normally imposed, producing progressive MAC dilatation over time. The main aim of this work is to perform a sensitivity analysis evaluating climate and economic effects of imposing various TPs under different policy scenarios. The analysis shows that TP variation has a considerable impact on the climatic and economic results.

Keywords: Environmental economics, non-CO2 greenhouse gases, marginal abatement cost curve, technical change

Jel codes: Q54, Q55

  1. Baker E., Clarke L., Shittu E. (2008), Technical Change and the marginal cost of abatement. Energy Economics, 30, 6: 2799-2816. DOI: 10.1016/j.eneco.2008.01.004
  2. Baker E., Adu-Bonnah K. (2008). Investment in risky R&D programs in the face of climate uncertainty. Energy Economics, 30, 2: 465-486. DOI: 10.1016/j.eneco.2006.10.003
  3. Bernard A., Vielle M., Viguier L. (2006). Burden Sharing Within a Multi-Gas Strategy. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 289-304.
  4. Bosetti V., Carraro C., Galeotti M., Massetti E., Tavoni M. (2006). WITCH: A World Induced Technical Change Hybrid Model. Energy Journal, Special issue on Hybrid Modeling of Energy-Environment Policies: Reconciling Bottom-up and Top-down, 13-38.
  5. Bosetti V., De Cian E., Sgobbi A., Tavoni M. (2009). The 2008 WITCH Model: New Model Features and Baseline, FEEM Nota di lavoro 85.2009, Sustainable Development series.
  6. Criqui P., Russ P., Deybe D. (2006). Impacts of multi-gas strategies for greenhouse gas emission abatement: insights from a partial equilibrium model. Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 248-274.
  7. EPA, United States Environment Protection Agency (2006a). Global Mitigation of Non-CO2 Greenhouse Gases, Report EPA 430-R-06-005.
  8. Mitigation and Climate Policy, The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 1-32.
  9. Weyant J.P., de la Chesnaye F.C., Blanford G.J. (2006). Overview of EMF-21: Multigas
  10. van Vuuren D.P., Eickhout B., Lucas P.L., den Elzen M.G.J. (2006b). Long-term multi-gas scenarios to stabilise radiative forcing – exploring costs and benefits within an integrated assessment framework. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 201-233.
  11. van Vuuren D.P., Weyant J., de la Chesnaye F. (2006a). Multi-gas scenarios to stabilize radiative forcing. Energy Economics, 28, 1: 102-120. DOI: 10.1016/j.ene-124co.2005.10.003
  12. UN, United Nations (1997). Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), Kyoto, Japan.
  13. Turton H., Barreto L. (2004). The extended energy-systems ERIS model: an overview, Interim report IR-04-10, Laxenburg, Austria: International Institute for Applied Systems Analysis.
  14. Smith S.J., Wigley T.M.L. (2006). Multi-Gas Forcing Stabilization with Minicam. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 373-391.
  15. Rao S., Riahi K. (2006). The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century. Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 177-200.
  16. MERGE code, http://www.stanford.edu/group/MERGE/m5ccsp.html Paltsev S., Reilly J.M., Jacoby H.D., Eckaus R.S., McFarland J., Sarofim M., Asadoorian M., Babiker M. (2005). The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4, Report 125, MIT Joint Program on the Science and Policy of Global Change, Cambridge, Massachusetts, USA.
  17. Manne A., Richels R. (2004). The impact of learning-by-doing on the timing and costs of CO2 abatement. Energy Economics, 26, 4: 603-619. DOI: 10.1016/j.eneco.2004.04.033
  18. Lucas P.L., van Vuuren D.P., Olivier J.G.J., den Elzen. M.G.J. (2007). Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & Policy, 10, 2: 85-103. DOI: 10.1016/j.envsci.2006.10.007
  19. IPCC, Intergovernmental Panel on Climate Change (2007). Fourth Assessment Report (AR4), Geneva, Switzerland.
  20. IPCC, Intergovernmental Panel on Climate Change (1996). Second Assessment Report (SAR), Geneva, Switzerland.
  21. IIASA-MESSAGE-B2 scenario database, http://www.iiasa.ac.at/web-apps/ggi/Ggi-Db/dsd?Action=htmlpage&page=series
  22. Grubb M. (1997). Technologies, energy systems and the timing of CO2 emissions abatement: an overview of economic issues. Energy Policy, 25, 2: 159-172. DOI: 10.1016/S0301-4215(96)00106-1
  23. Goulder L.H., Schneider S.H. (1999). Induced technological change and the attractiveness of CO2 abatement policies, Resource and Energy Economics, 21, 3-4:211-253.
  24. EPA, United States Environment Protection Agency (2012). Preliminary Draft Global Mitigation of Non-CO2 Greenhouse Gases Report, http://www.epa.gov/climatechange/EPAactivities/economics/nonco2mitigation.html
  25. EPA, United States Environment Protection Agency (2011). DRAFT: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 – 2030 EPA 430-D-11-003.
  26. EPA, United States Environment Protection Agency (2006b). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 – 2020, 430-R-06-003.

Samuel Carrara, Giacomo Marangoni, Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 1/2013, pp 91-124, DOI: 10.3280/EFE2013-001006