The Risk of Dataphrenia in the Analysis of Big Data. Notes from the Case «Mafia capitale»

Author/s Davide Bennato
Publishing Year 2016 Issue 2016/109 Language Italian
Pages 19 P. 83-101 File size 660 KB
DOI 10.3280/SR2016-109008
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This paper begins with an analysis of the diffusion on Twitter of news on an investigation that led to the discovery of the criminal system called «Mafia capitale». It then shows how a strictly computational approach is unable to investigate the factors at play in a media phenomenon, which are halfway between the typical processes of mass communication and those of interpersonal communication. The paper argues that the analysis of Big Data opens significant opportunities for the social scientist, as long as the sociological imagination is maintained and does not fall into an approach dictated by quantophrenia, which we may now call dataphrenia.

  1. C. Anderson (2008), «The End of Theory: The Data Deluge Makes the Scientific Method Obsolete », Wired,
  2. D. Bennato (2014), La dataveglianza di massa. Conseguenze etiche e relazionali delle scelte tecnologiche di Facebook, in G. Greco (a c. di), Pubbliche intimità. L’affettivo quotidiano nei siti di social network, Milano, FrancoAngeli, pp. 102-15.
  3. D. Bennato (2015), Il computer come macroscopio. Big data e approccio computazionale per comprendere i cambiamenti sociali e culturali, Milano, FrancoAngeli.
  4. D. Bennato, H. Benothman, A. Panconesi (2011), «Processi di diffusione delle informazioni nelle reti digitali. Il caso Twitter», Cultura e comunicazione/Culture and Communication, 2, pp. 72-8.
  5. J. Cannarella, J.A. Spechler (2014), «Epidemiological Modeling of Online Social Network Dynamics», arXiv preprint, arXiv: 1401.4208.
  6. M. Cha, H. Haddadi, F. Benevenuto, K.P. Gummadi (2010), «Measuring User Influence in Twitter: The Million Follower Fallacy», Proceedings of International Aaai Conference on Weblogs and Social Media (Icwsm), May.
  7. C. Cioffi-Revilla (2014), Introduction to Computational Social Science, London, Springer-Verlag.
  8. T.H. Davenport, D.J. Patil (2012), «Data Scientist: The Sexiest Jobs in XXI century», Harvard Business Review, XC, 10, pp. 70-6. P. Dear (ed.) (1991), The Literary Structure of the Scientific Argument, Philadelphia, University of Pennsylvania Press.
  9. S.L. Feld (1991), «Why your Friends have more Friends than you do», American Journal of Sociology, IVC, 6, pp. 1464-7, DOI: 10.1086/229693
  10. M. Fiasco (2015), Mafia in the Eternal City – A Profile of a Network of Organized Crime and of Administrative Corruption for New Business Opportunities, intervento presentato al «Sustainable Developments Goals: Challenges by Organized Crime and Corruption 13th UN Crime Congress», Doha, April 12-17,
  11. F. Grignetti (2015), «Le cinque cose da sapere su Mafia capitale», La Stampa, 5 giugno,
  12. N.R. Hanson (1958), Patterns of Discovery. An Inquiry into the Conceptual Foundations of Science, Cambridge, Cambridge University Press; tr. it., I modelli della scoperta scientifica: ricerca sui fondamenti concettuali della scienza, Milano, Feltrinelli, 1978.
  13. F. Heider (1958), The Psychology of Interpersonal Relations, New York, Wiley; tr. it., Psicologia delle relazioni interpersonali, Bologna, il Mulino, 2000.
  14. M. Honan (2014), «I liked Everything I saw on Facebook for Two Days. Here’s what it did to me», Wired, August 11,
  15. J. Kagan (2009), The Three Cultures. Natural Sciences, Social Sciences, and the Humanities in the 21st Century, Cambridge, Cambridge University Press; tr. it., Le tre culture. Scienze naturali, scienze sociali e discipline umanistiche nel XXI secolo, Milano, Feltrinelli, 2013.
  16. P.F. Lazarsfeld (1955), Interpretation of Statistical Relations as a Research Operation, in P.F. Lazarsfeld, M. Rosenberg (eds.), The Language of Social Research: A Reader in the Methodology of Social Research, Glencoe, The Free Press, pp. 115-25; tr. it., L’interpretazione delle relazioni statistiche come operazione di ricerca, in Metodologia e ricerca sociologica, Bologna, il Mulino, 1967, pp. 393-411.
  17. D. Lazer (2015), «The Rise of the Social Algorithm», Science, 6239 (348), May 7, pp. 1090-1, DOI: 10.1126/science.aab1422
  18. K. Lerman, X. Yan, X.Z. Wu (2015), «The Majority Illusion in Social Networks», arXiv preprint, arXiv:1506.03022.
  19. R. Lynd (1939), Knowledge for what? The Place of Social Science in American Culture, Princeton, Princeton University Press.
  20. R.K. Merton (1968), Social Theory and Social Structure, New York, Free Press; tr. it., Teoria e struttura sociale, Bologna, il Mulino, 2000.
  21. E. Morgan (2014), «I quit liking Things on Facebook for Two Weeks. Here’s how It changed My View of Humanity», Medium, August 13, abace#.2py5o1rxw.
  22. E. Noelle-Neumann (1974), «The Spiral of Silence: A Theory of Public Opinion», Journal of Communication, XXIV, 2, pp. 43-51, DOI: 10.1111/j.1460-2466.1974.tb00367.
  23. C. Nussbaumer Knaflic (2015), Storytelling with Data, New Jersey, John Wiley & Sons.
  24. A. Rao, N. Spasojevic, Z. Li, T. DSouza (2015), «Klout Score: Measuring Influence Across Multiple Social Networks», presented at 2015 Ieee International Conference on Big Data, Santa Clara (CA), arXiv preprint, arXiv: 1510.08487v1.
  25. C.P. Snow (1961), The Two Cultures: The Rede Lecture [1959], Cambridge, Cambridge University Press; tr. it, Le due culture, Milano, Feltrinelli, 1964. P. Sorokin (1956), Fads and Foibles in Modern Sociology and Related Sciences, Chicago, Henry Regnery; tr. it., Mode e utopie nella sociologia moderna e scienze collegate, Firenze, Giunti Barbera, 1965.
  26. J. Stikeleater (2013), «How to tell a Story with Data», Harvard Business Review, April 24,
  27. T. Vigen (2015), Spurious Correlations. Correlations does not Equal to Causation, New York, Hachette.
  28. C. Wright Mills (1959), The Sociological Immagination, Oxford, Oxford University Press; tr. it., L’immaginazione sociologica, Roma, Il Saggiatore, 2014.
  29. J. Ziman (2000), Real Science, Cambridge, Cambridge University Press; tr. it., La vera scienza, Bari, Dedalo, 2002.

  • Handbook of Research on Advanced Research Methodologies for a Digital Society Costantino Cipolla, pp.42 (ISBN:9781799884736)
  • Da "angeli del mare" a "complici dei trafficanti": la politicizzazione del discorso sovranista contro le ONG umanitarie Dario Lucchesi, Andrea Cerase, in MONDI MIGRANTI 2/2023 pp.153
    DOI: 10.3280/MM2023-002009

Davide Bennato, Il rischio della datafrenia nell’analisi dei big data. Appunti a partire dal caso «Mafia capitale» in "SOCIOLOGIA E RICERCA SOCIALE " 109/2016, pp 83-101, DOI: 10.3280/SR2016-109008