Large Databases of Administrative Data: Management and Analysis Strategies. The Benefit of Transforming Synchronic Data in Diachronic Vectors

Author/s Andrea Amico, Giampiero D'Alessandro
Publishing Year 2016 Issue 2016/109 Language Italian
Pages 16 P. 127-142 File size 95 KB
DOI 10.3280/SR2016-109011
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The ever-increasing availability of information, together with the higher (time and financial) costs of data gathering, makes the use of pre-existing databases more and more convenient. The majority of the data gathered and recorded each day is not designed for research purposes however. It is still a task of each researcher to choose the relevant data in consideration of the research objectives, and to organize his own database according to his research purposes. The case study presented is the construction of a longitudinal dataset using synchronic data extracted from the administrative archive of the Sapienza University of Rome, and referred to the registered students’ careers. This dataset fits the purpose of studying the temporal dynamics and allows the analysis of specific phenomena (dropping-out, stopping-out, mobility, degree rates, etc.). Three different analysis on this dataset are presented, that highlight the usefulness of this kind of data structure: a quasi-experimental design, a sequence analysis and an event history analysis.

  1. A. Abbott (1990), «A Primer on Sequence Methods», Organization Science, 1-4, pp. 375-92, DOI: 10.1287/orsc.1.4.375
  2. A. Abbott (1995), «Sequence Analysis: New Methods for Old Ideas», Annual Review of Sociology, 21-4, pp. 93-113, DOI: 10.1146/
  3. M.S. Agnoli (2004), Il disegno della ricerca sociale, Roma, Carocci.
  4. Anvur (2014), Rapporto sullo stato del sistema universitario e della ricerca 2013,
  5. G. Benvenuto, A. Decataldo, A. Fasanella (a c. di) (2012), C’era una volta l’università? Analisi longitudinale delle carriere degli studenti prima e dopo la «grande riforma», Acireale-Roma, Bonanno.
  6. H.P. Blossfeld, A. Hamerle, K.U. Mayer (1989), Event History Analysis, Hillsdale (NJ), Erlbaum.
  7. M. Borlandi, L. Sciolla (a c. di) (2005), La spiegazione sociologia. Metodi, tendenze, problemi, Bologna, il Mulino.
  8. J.M. Box-Steffensmeier, S.J. Bradford (2004), Event History Modeling. A Guide for Social Scientists, Cambridge (UK), Cambridge University Press.
  9. d. boyd, K. Crawford (2012), «Critical Questions for Big Data», Information, Communication & Society, 15-5, pp. 662-79, DOI: 10.1080/1369118X.2012.678878
  10. G. Brunello, R. Winter-Ebmer (2003), «Why do Students expect to stay longer in College? Evidence From Europe», Economic Letters, 80-2, pp. 247-53, DOI: 10.1016/S0165-1765(03)00086-7
  11. H.U. Buhl, M. Röglinger, F. Moser, J. Heidemann (2013), «Big Data: A Fashionable Topic with(out) Sustainable Relevance for Research and Practice?», Business & Information Systems Engineering, 5-2, pp. 65-9, DOI: 10.1007/s12599-013-0249-5
  12. D.T. Campbell, J.C. Stanley (1966), Experimental and Quasi-Experimental Designs for Research, Boston (MA), Houghton Mifflin Company.
  13. G.H. Elder (2001), Life Course: Social Aspects, in N.J. Smelser, P. Baltes (eds.), International Encyclopedia of the Social & Behavioral Sciences, Cambridge (UK), Elsevier, vol. 13, DOI: 10.1016/B0-08-043076-7/02023-4
  14. L. Gallino (2004), Dizionario di sociologia, Torino, Utet.
  15. I. Häkkinen, R. Uusitalo (2003), «The Effect of a Student Aid Reform on Graduation: A Duration Analysis», Working Paper, 8, Department of Economics, Uppsala University.
  16. D. Laney (2001), «3D Data Management: Controlling Data Volume, Velocity and Variety», Application Delivery Strategies Meta Group, file 949, Variety.pdf.
  17. S.E. Mackie (2001), «Jumping the Hurdles-undergraduate Student Withdrawal Behaviour», Innovations in Education and Teaching International, 38-3, pp. 265-76, DOI: 10.1080/14703290110056371
  18. S. Madden (2012), «From Databases to Big Data», Ieee internet Computing, 16-3, pp. 4-6, DOI: 10.1109/MIC.2012.50
  19. L. Manovich (2011), Trending: The Promises and the Challenges of Big Social Data, in M.K.
  20. Gold, L.F. Klein (eds.), Debates in the Digital Humanities, Minneapolis (MN), University of Minnesota Press.
  21. K.U. Mayer (1986), «Structural Constraints on the Life Course», Human Development, 29-3, pp. 163-70, DOI: 10.1159/000337846
  22. S. Menard (ed.) (2007), Handbook of Longitudinal Research: Design, Measurement, and Analysis, Amsterdam, Elsevier. J.W. Mohr, H.C. White (2008), «How to Model an Institution», Theory and Society, 37-5, pp. 485-512, DOI: 10.1007/s11186-008-9066-0
  23. S.S. Peng (1978), «Transfer Student in Institutions of Higher Education», Research in Higher Education, 8-4, pp. 319-42, DOI: 10.1007/BF00976802
  24. S.R. Porter (2000), Including Transfer‐out Behavior in Retention Models: Using the Nsc Enrollment Search Data, presented at the «40th Annual Association of Institutional Research Forum», Cincinnati (OH), May 21-24,
  25. M.F. Romano, G. Nencioni (1994), «Analisi delle carriere degli studenti immatricolati dal 1980 al 1982», report n. 76, Università di Pisa,
  26. E. Ruspini (2004), La ricerca longitudinale, Milano, FrancoAngeli.
  27. S. Sagiroglu, D. Sinanc (2013), Big Data: A Review, presented at «International Conference on Collaboration Technologies and Systems (Cts)», San Diego (CA) , Ieee Xplore Digital Library, May 20-24, pp. 42-7, DOI: 10.1109/CTS.2013.6567202
  28. B. Sciarretta (2012), «L’architettura del sistema informativo della Sapienza Università di Roma », in G. Benvenuto, A. Decataldo, F. Fasanella (a c. di), C’era una volta l’Università? Analisi longitudinale delle carriere degli studenti prima e dopo la «grande riforma», Acireale-Roma, Bonanno.
  29. H.T. Scovill (1930), «The Problem of the Transfer Student», The Journal of Business of the University of Chicago, 3-4, pp. 133-53.
  30. W.G. Spady (1970), «Dropouts from Higher Education: An Interdisciplinary Review and Synthesis», Interchange, 1-1, pp. 64-85, DOI: 10.1007/BF02214313
  31. L. Stracqualursi, P. Monari (2006), «Attraction Poles in the University of Bologna: A Social Network Analysis», Statistica, 66-2, pp. 149-60, DOI: 10.6092/issn.1973-2201/495
  32. V. Tinto (1975), «Dropouts from Higher Education: A Theoretical Synthesis of Recent Literature », Review of Educational Research, 45-1, pp. 89-125, DOI: 10.3102/00346543045001089
  33. N.B. Tuma, M.T. Hannan (eds.) (1984), Social Dynamics: Models and Methods, New York (NY), Academic Press.
  34. P.C. Zikopoulos, C. Eaton, D. deRoss, T. Deutsch, G. Lapis (eds.) (2011), Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, New York (NY), Mc-Graw-Hill.

  • Research on Students' Performance in Higher Education through Sequence Analysis Giampiero D'Alessandro, Alessandra Decataldo, in SOCIOLOGIA E RICERCA SOCIALE 110/2016 pp.19
    DOI: 10.3280/SR2016-110003
  • La Sequence Analysis come strumento per lo studio delle carriere e della dispersione universitaria Giampiero D’Alessandro, in RIV Rassegna Italiana di Valutazione 65/2017 pp.82
    DOI: 10.3280/RIV2016-065006

Andrea Amico, Giampiero D'Alessandro, Strategie di gestione e analisi di grandi basi di dati amministrativi: l’utilità di trasformare dati sincronici in vettori diacronici in "SOCIOLOGIA E RICERCA SOCIALE " 109/2016, pp 127-142, DOI: 10.3280/SR2016-109011