Learners in the loop: hidden human skills in machine intelligence

Titolo Rivista SOCIOLOGIA DEL LAVORO
Autori/Curatori Paola Tubaro
Anno di pubblicazione 2022 Fascicolo 2022/163
Lingua Inglese Numero pagine 20 P. 110-129 Dimensione file 236 KB
DOI 10.3280/SL2022-163006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Today’s artificial intelligence, largely based on data-intensive machine learning algorithms, relies heavily on the digital labour of invisibilized and precarized humans-in-the-loop who perform multiple functions of data preparation, verification of results, and even impersonation when algorithms fail. Using original quantitative and qualitative data, the present article shows that these workers are highly educated, engage significant (sometimes advanced) skills in their activity, and earnestly learn alongside machines. However, the loop is one in which human workers are at a disadvantage as they experience systematic misrecognition of the value of their competencies and of their contributions to technology, the economy, and ultimately society. This situation hinders negotiations with companies, shifts power away from workers, and challenges the traditional balancing role of the salary institution.

Basata su algoritmi di apprendimento automatico (machine learning) ad alta intensità di dati, l’intelligenza artificiale di oggi si basa largamente sul contributo di "umani nel loop", invisibilizzati e precarizzati, che svolgono una varietà di funzioni di supporto. La partecipazione di questi lavoratori all’apprendimento automatico è una forma di digital labour, e fa parte di catene di approvvigionamento che si estendono in tutto il mondo per soddisfare le crescenti esigenze dell’industria tecnologica. L’articolo esplora come le nozioni di apprendimento negli esseri umani e di apprendimento automatico nelle macchine si intersecano e si influenzano a vicenda. L’analisi si basa sui dati originali di due studi a metodo misto, condotti rispettivamente in Francia e nel mondo di lingua spagnola (Spagna e America Latina). Contro un luogo comune, l’articolo mostra che il "loop" è uno in cui sia le macchine che le persone imparano, ed abilità umane molto avanzate vengono messe a valore. Tuttavia, gli esseri umani sono in svantaggio perché la riorganizzazione del lavoro in atto impedisce loro di ottenere un riconoscimento e di costruire una traiettoria di sviluppo personale e professionale. Minacciando il classico legame tra apprendimento/abilità e reddito, questo è un meccanismo attraverso il quale l’istituzione salario viene erosa.

Keywords:piattaforme di lavoro digitali, intelligenza artificiale, competenze, paesi di lingua spagnola

  1. Altenried M. (2020). The platform as factory: Crowdwork and the hidden labour behind artificial intelligence. Capital & Class, 44(2): 145-158. DOI: 10.1177/030981681989941
  2. Berg J., Furrer M., Harmon E., Rani U., Silberman M.S. (2018). Digital labour platforms and the future of work: Towards decent work in the online world. Geneva: ILO Report. -- Available at: www.ilo.org/global/publications/books/WCMS_645337/lang—en/index.htm.
  3. Casilli A.A. (2019). En attendant les robots: Enquête sur le travail du clic. Paris: Seuil.
  4. Casilli A.A., Tubaro P., Le Ludec C., Coville M., Besenval M., Mouhtare T.. Wahal E. (2019). Le micro-travail en France. Derrière l’automatisation, de nouvelles précarités au travail? Paris, Report of the Digital Platform Labor (DiPLab) project. -- Available at: https://hal.inria.fr/hal-02139528/.
  5. Chicchi F. (2020). Beyond the ‘salary institution’: on the ‘society of performance’ and the platformisation of the employment relationship. Work Organisation, Labour & Globalisation, 14(1): 15-31.
  6. Cognilytica (2020). Data preparation and labeling for AI 2020. Report CGR-DLP20. Washington DC: Cognilytica.
  7. Crouch C. (1997). Skills-based full employment: the latest philosopher’s stone. British Journal of Industrial Relations, 35(3): 367-391.
  8. Crouch C., Finegold D., Sako M. (2001). Are Skills the Answer? The Political Economy of Skill Creation in Advanced Industrial Countries. Oxford: Oxford University Press.
  9. Denton E., Hanna A., Amironesei R., Smart A., Nicole H. (2021). On the genealogy of machine learning datasets: A critical history of ImageNet. Big Data & Society, 8(2). DOI: 10.1177/20539517211035955
  10. Difallah D., Filatova E., Ipeirotis P. (2018). Demographics and dynamics of Mechanical Turk workers. Proceedings of WSDM 2018: the Eleventh ACM International Conference on Web Search and Data Mining, ACM: 135-143.
  11. Ekbia H.R., Nardi B.A. (2017). Heteromation, and Other Stories of Computing and Capitalism. Cambridge (MA): MIT Press.
  12. ENCOVI (2018). Encuesta Nacional de Condiciones de Vida. Caracas: Universidad Católica Andrés Bello.
  13. ENCOVI (2021). Encuesta Nacional de Condiciones de Vida. Documento técnico. Caracas: Universidad Católica Andrés Bello.
  14. Graham M., Anwar M. (2019). The global gig economy: towards a planetary labour market? First Monday, 24(4).
  15. Gray M., Suri S. (2019). Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Boston, MA: Houghton Mifflin Harcourt.
  16. Grohmann R., Fernandes Araújo W. (2021). Beyond Mechanical Turk: The work of Brazilians on global AI platforms. In: P. Verdegem, ed., AI for Everyone? Critical Perspectives, University of Westminster Press, pp. 247-266.
  17. Heuer H., Jarke J., Breiter A. (2021). Machine learning in tutorials – Universal applicability, underinformed application, and other misconceptions. Big Data & Society, 8(1). DOI: 10.1177/20539517211017593
  18. Honneth A. 1995 [1992]. The Struggle for Recognition: The Moral Grammar of Social Conflicts. Cambridge: Polity Press.
  19. ILO (2021). World Employment and Social Outlook 2021: The role of digital labour platforms in transforming the world of work. Report. Geneva: ILO.
  20. Ipeirotis P. (2010). Demographics of Mechanical Turk. NYU Working Paper, CEDER-10-01.
  21. Irani L. (2015). The cultural work of microwork. New Media & Society, 17(5): 720-739. DOI: 10.1177/146144481351192
  22. Kässi O., Lehdonvirta V., Stephany F. (2021). How many online workers are there in the world? A data-driven assessment [version 4; peer review: 4 approved]. Open Research Europe, 1:53.
  23. Lehdonvirta V., Kässi O., Hjorth I., Barnard H., Graham M. (2019). The global platform economy: A new offshoring institution enabling emerging-economy microproviders. Journal of Management, 45(2): 567-599. DOI: 10.1177/014920631878678
  24. Lindquist J. (2018). Illicit economies of the Internet: Click farming in Indonesia and beyond. Made in China Journal, 3(4): 88-91.
  25. OECD (2021). Education at a Glance 2021. Report. Paris: OECD.
  26. Margaryan A. (2019a). Comparing crowdworkers’ and conventional knowledge workers’ self-regulated learning strategies in the workplace. Human Computation, 6: 83-97.
  27. Margaryan A. (2019b). Workplace learning in crowdwork: Comparing microworkers’ and online freelancers’ practices. Journal of Workplace Learning, 31(4): 250-273. DOI: 10.1108/JWL-10-2018-012
  28. Margaryan A., Charlton-Czaplicki T., Gadiraju U. (2020). Learning and Skill Development in Online Platform Work: Comparing Microworkers’ and Online Freelancers’ Practices. CBS Report.
  29. Mavridis P., Gross-Amblard D., Miklós Z. (2016). Using hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing. Proceedings of the 25th International Conference on World Wide Web, 843-853.
  30. Mehrotra S. (2018). From the informal to the formal economy: Skills initiatives in India. In A. Sakamoto, J. Sung, eds., Skills and the future of work: Strategies for inclusive growth in Asia and the Pacific. Geneva: International Labour Organization, pp. 364-390.
  31. Miceli M., Schuessler M., Yang T. (2020). Between subjectivity and imposition: Power dynamics in data annotation for computer vision, Proceedings of the ACM on Human-Computer Interaction, 4, CSCW2, 115, DOI: 10.1145/341518
  32. Mothobi O., Gillwald A., Schoentgen A. (2018). What Is The State Of Microwork in Africa? A View from Seven Countries. Report, Research ICT Africa.
  33. Newlands G. (2021). Lifting the curtain: Strategic visibility of human labour in AI-as-a-Service. Big Data and Society, 8(1). DOI: 10.1177/2053951721101602
  34. Palmer R. (2017). Jobs and skills mismatch in the informal economy. Geneva: International Labour Organization.
  35. Posada J. (2022, online first). Embedded reproduction in platform data work. Information, Communication & Society. DOI: 10.1080/1369118X.2022.2049849
  36. Schmidt F. (2019). Crowdproduktion von Trainingsdaten: Zur Rolle von Online-Arbeit beim Trainieren autonomer Fahrzeuge. Report, Düsseldorf: Hans-Böckler-Stiftung.
  37. Tomaskovic-Devey D., Avent-Holt D. (2019). Relational Inequalities: An Organizational Approach. Oxford: Oxford University Press.
  38. Tubaro P., Casilli A.A. (2019). Micro-work, artificial intelligence and the automotive industry. Journal of Industrial and Business Economics, 46(3): 333-345.
  39. Tubaro P., Casilli A.A., Coville M. (2020a). The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. Big Data & Society, 7(1). DOI: 10.1177/205395172091977
  40. Tubaro P., Le Ludec C., Casilli A.A. (2020b). Counting ‘micro-workers’: societal and methodological challenges around new forms of labour. Work Organisation, Labour & Globalisation, 14(1), 67-82.
  41. Tubaro P. (2021). Disembedded or deeply embedded? A multi-level network analysis of online labour platforms. Sociology, 55(5): 927-944. DOI: 10.1177/003803852098608
  42. Tubaro P., Casilli A.A. (2022). Human listeners and virtual assistants: privacy and labor arbitrage in the production of smart technologies. In: F. Ferrari, M. Graham, eds., Digital Work in the Planetary Market, Cambridge (MA): MIT Press, pp. 175-190.
  43. Tubaro P., Coville M., Le Ludec C., Casilli A.A. (2022). Hidden inequalities: the gendered labour of women on micro-tasking platforms. Internet Policy Review, 11(1). DOI: 10.14763/2022.1.162
  44. UNESCO Institute for Statistics. (2022). Sustainable Development Goals Data. Available at: http://data.uis.unesco.org/.
  45. Wood A.J., Graham M., Lehdonvirta V., Hjorth I. (2019). Networked but commodified: The (dis)embeddedness of digital labour in the gig economy. Sociology, 53(5): 931-950. DOI: 10.1177/003803851982890

  • Complex thinking through a Transition Design-guided Ideathon: testing an AI platform on the topic of sharing economy Jorge Sanabria-Z, Isolda Margarita Castillo-Martínez, Laura Icela González-Pérez, María Soledad Ramírez-Montoya, in Frontiers in Education 1186731/2023
    DOI: 10.3389/feduc.2023.1186731
  • Dis//assemblages of AI: repair labor and resistance in the automated workplace Dominique A. Montiel Valle, Samantha Shorey, in Information, Communication & Society /2024 pp.2022
    DOI: 10.1080/1369118X.2024.2371794

Paola Tubaro, Learners in the loop: hidden human skills in machine intelligence in "SOCIOLOGIA DEL LAVORO " 163/2022, pp 110-129, DOI: 10.3280/SL2022-163006