Big Data doesn’t "speak for themselves". The role of models in the dissemination of analytics for management accounting

Journal title MANAGEMENT CONTROL
Author/s Roberto Del Gobbo
Publishing Year 2023 Issue 2023/1
Language Italian Pages 16 P. 5-20 File size 206 KB
DOI 10.3280/MACO2023-001001
DOI is like a bar code for intellectual property: to have more infomation click here

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Big Data and analytics have the potential to significantly influence decision-making processes and all management accounting activities, from reporting to strategic planning and control. However, the diffusion of Big Data applications in companies still remains low, for a variety of reasons, relating to people, technology and cultural factors, which the literature has documented. This article intends to propose a reflection on the different "philosophical" views that managers assume, more or less consciously, on Big Data. These views affect expectations on the way Big Data should generate knowledge and their effective use in practice. Those who adopt the representational view of data are led to be-lieve that Big Data can help generate knowledge quickly and automatically, only by using advanced statistical-computational techniques. Conversely, according to the relational view, the central role in the knowledge generation process is played by models, understood as ways of organizing data, which act as a "bridge" be-tween Big Data and their applications to decision-making processes. The article compares these two opposing views and highlights, through theoretical and practi-cal considerations, how relying excessively on the automatic analysis of Big Data can fuel unrealistic expectations, which are then disregarded. The emphasis is placed on the function of the models, built on the decision-maker’s knowledge of the application domain, which determine what counts as "data" and guide the technical choices in the elaboration phase and in the interpretation of results, fa-voring an effective use of Big Data for the improvement of business processes.

Keywords: Big Data, Analytics, Models, Management accounting

  1. Agostini M., Chiucchi M.S., Giuliani M. (2020). Big Data e Analytics: impatto sul sistema aziendale e performance. In: Lombardi R., Mancini D., Chiucchi M.S. (2020), Smart technologies, digitalizzazione e capitale intellettuale: Sinergie e opportunità. Milano, FrancoAngeli, pp. 132-156.
  2. Anderson C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired magazine, 16(7), pp. 16-07.
  3. Bruni, G. (1990). Contabilità per l’alta direzione. Il processo informativo funzionale alle decisioni di governo dell’impresa, Milano, Etas Libri.
  4. Calude C.S., Longo, G. (2017), The Deluge of Spurious Correlations in Big Data. Foundations of Science, 22(3), pp. 595-612.
  5. Caserio, C. (2021). I sistemi informativi aziendali per il supporto decisionale: profili evolutivi e prospettive di ricerca. In: Mancini, D., D’Onza, G., & Caserio, C. (20219. Scritti in onore di Luciano Marchi, Volume II, Sistemi informativi e revisione aziendale. Torino, G. Giappichelli Editore, pp. 65-73.
  6. Caserio C. (2015). Modelli d’azienda per il supporto decisionale e la generazione della conoscenza, Torino, G. Giappichelli Editore.
  7. Castellano N., Presti, C., Del Gobbo R. (2017). Employing big data & analytics in decision-making: Factors affecting managers’ trustworthiness. In: Proceedings of the 11th European Conference on Information Systems Management, ECISM 2017, Academic Conferences and Publishing Limited, pp. 37-46.
  8. Chehbi Gamoura S., Koruca H.İ., Gülmez E., Kocaer E.R., Khelil I. (2020). The Evidence of the “No Free Lunch” Theorems and the Theory of Complexity in Business Artificial Intelligence. In: The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, April, Springer, Cham, pp. 325-343. DOI: 10.1007/978-3-030-79357-9_32
  9. Choi T.M., Wallace S.W., Wang Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), pp. 1868-1883.
  10. De Santis F. D’Onza G. (2021). Big data and data analytics in auditing: in search of legit-imacy, Meditari Accountancy Research, 29(5), pp. 1088-1112. DOI: 10.1108/MEDAR-03-2020-0838
  11. European Commission (2022). Digital Economy and Society Index (DESI), -- https://digital-strategy.ec.europa.eu/en/policies/desi.
  12. Favotto F. (1990). Simulazione e modello del bilancio di esercizio. In: Brunetti, G., Coda, V., Favotto, F. (a cura di), Analisi, previsioni, simulazioni economico-finanziarie d’impresa, Milano, EtasLibri.
  13. Ferraris Franceschi R. (1984). Finalità dell’azienda e condizioni di funzionamento, Pisa, SEU.
  14. Frey C.B., Osborne M.A. (2017). The future of employment: How susceptible are jobs to computerisation?. Technological Forecasting and Social Change, 114, 254-280.
  15. Jeble S., Kumari S., Patil Y. (2017). Role of big data in decision-making. Operations and Supply Chain Management: An International Journal, 11(1), pp. 36-44.
  16. Lean J., Down S., Sadler‐Smith E. (1999). The nature of the client‐personal business advisor relationship within Business Link, Journal of small business and enterprise development, 6(1), pp. 80-88. DOI: 10.1108/EUM0000000006666
  17. Leonelli, S. (2020). Scientific Research and Big Data. In: Zalta E. N. (Ed.), The Stanford Encyclopedia of Philosophy, Summer Edition, Metaphysics Research Lab, Stanford University, -- https://plato.stanford.edu/archives/sum2020/entries/science-big-data.
  18. Lombardi R., Secundo G. (2020). The digital transformation of corporate reporting – a systematic literature review and avenues for future research, Meditari Accountancy Research, 29(5), pp. 1179-1208. DOI: 10.1108/MEDAR-04-2020-0870
  19. Lombardi R., Cano-Rubio M., Schimperna F., Trequattrini R. (2021), The impact of smart technologies on the management and strategic control: a structured literature review. Management Control, Special Issue 1, pp. 11-30. DOI: 10.3280/MACO2021-001-S1002
  20. Lombardi R., Mancini D., Chiucchi M.S. (2020). Smart technologies, digitalizzazione e capitale intellettuale: Sinergie e opportunità, Milano, FrancoAngeli.
  21. Marchi L. (2003). I sistemi informativi aziendali, Milano, Giuffrè.
  22. Marchi L., Caserio C. (2010). Generating knowledge by combining prediction models with information technology. In: D’Atri A., De Marco M., Braccini A., Cabiddu F. (Eds.), Management of the Interconnected World, Physica-Verlag HD, pp. 307-314. DOI: 10.1007/978-3-7908-2404-9_36
  23. Marchi L., Ciaramella N. (2009), Prime considerazioni sui caratteri dei modelli in campo economico-aziendale. In Marchi L., Mancini D. (a cura di), Gestione informatica dei dati aziendali, Milano, FrancoAngeli
  24. McAfee A., Brynjolfsson E., Davenport T.H., Patil D.J., Barton D. (2012). Big data: the management revolution, Harvard business review, 90(10), pp. 60-68.
  25. Merendino A., Dibb S., Meadows M., Quinn L., Wilson D., Simkin L., Canhoto A. (2018). Big data, big decisions: The impact of big data on board level decision-making. Journal of Business Research, 93, pp. 67-78.
  26. Möller K., Schäffer U., Verbeeten F. (2020). Digitalization in management accounting and control: an editorial. Journal of Management Control, 31(1), pp. 1-8.
  27. Niu L., Lu J., Zhang G., Wu D. (2013), FACETS: A cognitive business intelligence system. Information Systems, 38(6), pp. 835-862.
  28. Paolini A. (2022), Integrated data management: New perspectives for management control. Management control, Special Issue, 2, pp. 5-14. DOI: 10.3280/MACO2022-002-S1001
  29. Presti C. (2022). L’azienda intelligente: opportunità e minacce per la creazione di valore. Management Control, 3, pp. 5-12. DOI: 10.3280/MACO2022-003001
  30. Russom P. (2011). Big data analytics. TDWI best practices report, 19(4), pp. 1-34.
  31. Schäffer U., Weber J. (2019). Digitalization ante portas. The transformation of controlling as reflected in the third WHU study on the future of controlling. In U. Schäffer (Ed.), Behavioral Controlling: Anniversary Volume in Honor of Jürgen Weber, pp. 179-190, Wiesbaden. DOI: 10.1007/978-3-658-25983-9_12
  32. Verma S. (2017). Big Data and advance analytics: Architecture, techniques, applications, and challenges. International Journal of Business Analytics (IJBAN), 4(4), pp. 21-47. DOI: 10.4018/IJBAN.2017100102
  33. Zappa G. (1956). Le produzioni nell’economia delle imprese, Milano, Giuffrè.

Roberto Del Gobbo, I Big Data non "parlano da soli". Il ruolo dei modelli nella diffusione degli analytics per il management accounting in "MANAGEMENT CONTROL" 1/2023, pp 5-20, DOI: 10.3280/MACO2023-001001