Titolo Rivista FINANCIAL REPORTING
Autori/Curatori Mario Daniele, Elisa Raoli
Anno di pubblicazione 2024 Fascicolo 2024/2
Lingua Inglese Numero pagine 29 P. 133-161 Dimensione file 222 KB
DOI 10.3280/FR2024-002006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più
clicca qui
Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.
Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF
FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche
Purpose: This study compares models for predicting business financial crises, fo-cusing on which are most effective. In light of the new European Directive on business failure, it highlights a trade-off between predictive accuracy and timeli-ness in static models and offers an alternative approach. Design/methodology/approach: This study examines the Italian early warning system (EWS), testing static alert indicators’ predictive ability on a large sample of private companies. It then proposes a dynamic version of the EWS. Findings: The results show a trade-off between predictive ability and timeliness for static models. In contrast, a dynamic system is more accurate in predicting cri-sis events, allowing managers to take corrective actions. Originality: The results highlight the limitations of static prediction models and emphasize the potential of a simple dynamic model that is specifically designed for small- and medium-sized entities (SMEs). Practical implications: This study proposes a dynamic model tailored for SMEs, which are particularly vulnerable to financial crises. This insight can help managers and policymakers balance accurate predictions with timely interventions, especial-ly in European countries implementing crisis prediction models.
Keywords:corporate failure; early warning systems; crisis; crisis prediction
Jel codes:G01, M4, M400, M410, M480
Mario Daniele, Elisa Raoli, Early Warning Systems for financial crises prediction in private companies: Evidence from the Italian context in "FINANCIAL REPORTING" 2/2024, pp 133-161, DOI: 10.3280/FR2024-002006