Incentive-based policy to promote the production of geothermal power from carbon tax scheme: A case of Indonesian CGE model

Journal title RIVISTA DI STUDI SULLA SOSTENIBILITA'
Author/s Herbert Wibert, Victor Hasudungana, Sulthon Sjahril Sabaruddinb
Publishing Year 2020 Issue 2020/1
Language English Pages 33 P. 105-127 File size 223 KB
DOI 10.3280/RISS2020-001007
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Indonesia has the largest geothermal potential resources in the world, however, its current utilization rate is about 6% of total geothermal potential. This paper investigates the impact of imposing the carbon taxation on fossil fuels and the tax is then allocated to incentivize the geothermal electricity supply. The results show that carbon taxation can effectively reduce the national GHG emissions. In the scenario of imposing the carbon tax only on coal consumption, the economy tends to improve better than imposing the tax on all types of fossil fuels. This finding indicates that the policy could only reduce the total production cost of electricity supply, but cannot offset the increased price of fossil fuels due to carbon tax. Our analysis also shows that a revenue-recycling scheme of carbon tax on coal uses by reducing the electricity price will lead to welfare improvements and inequality reductions since coal is only consumed in the industrial sector.

Keywords: Geothermal, subsidy, renewable energy promotion, carbon tax, hybrid CGE model, Indonesia

  1. Allan G., Fence J.D., Eromenko I., Lim A., Gilmartin M., McGregor P., Swales K., Turner K. (2008). The Impact on the Scottish Economy of Reducing Greenhouse Gas Emissions in Scotland, Illustrative Findings from an Experiment Computable General Equilibrium Model for Scotland. Final Report October 2008, University of Strathclyde, Business School.
  2. Allen M.R., Dube O.P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K. (2018). Framing and Context. In: Masson-Delmotte V., Zhai P., Pörtner H.-O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., Connors S., Matthews J.B.R., Chen Y., Zhou X., Gomis M.I., Lonnoy E., Maycock T., Tignor M., Waterfield T. (eds.). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press.
  3. Center for Assessment of Process and Energy Industries (BPPT) (2018). Indonesia Energy Outlook 2018. Sustainable Energy for Land Transportation.
  4. Center for Assessment of Process and Energy Industries (BPPT) (2017). Indonesia Energy Outlook 2017. Clean Energy Technology Development Initiatives.
  5. Baumert K.A., Herzog T., and Pershing J. (2005). Navigating the Numbers: Greenhouse Gas Data and International Climate Policy. World Resources Institute.
  6. Beauséjour L., Lenjosek G. and Smart M. (1995). A GCE Approach to Modelling Carbon Dioxide Emissions Control in Canada and the United States. The World Economy, 18: 457-489.
  7. Bergman L. (1990). Energy and Environmental Constraints on Growth: a CGE Modelling Approach. Journal of Policy Modelling, 12: 671-691.
  8. Bhandari V., Giacomoni A.M., Wollenberg B.F., Wilson E.J. (2017). Interacting Policies in Power Systems: Renewable Subsidies and a Carbon Tax. The Electricity Journal.
  9. Bereiter B. et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600-kyr before present. Geophysical Research Letters, 42(2): 542-549.
  10. Bhattacharyya S.C. (2011). Energy Economics: Concepts, Issues, Markets and Governance. London: Springer-Verlag.
  11. Bohringer C., and Loschel A. (2006). The Energy Journal, Hybrid Modeling of Energy-Environment Policies: Reconciling Bottom-up and Top-down. International Association for Energy Economics (IAEE).
  12. Conrad K. (1999). Computable General Equilibrium Models for Environmental Economics and Policy Analysis. In: van den Bergh J.C.J.M. (eds). Handbook of Environmental and resource Economics. Cheltenham: Edward Elgar Publishing Ltd.
  13. Conrad K. and Schroder M. (1991). An Evaluation of Taxes on Air Pollutant Emissions: An Applied General Equilibrium Approach. Swiss Journal of Economics and Statistics, 127: 199-224.
  14. Devarajan S., and Robinson S. (2002). The influence of computable general equilibrium models on policy. TMD Discussion Paper No. 98.
  15. Goulder L. and Pizer W. (2006). The Economics of Climate Change. NBER Working Paper: 11923.
  16. Lee H. and Roland-Holst D.W. (1997). Trade and the Environment. In: Francois J.F and Reihert K.A. (eds). Applied Methods for Trade Analysis: A Handbook. Cambridge: Cambridge University Press.
  17. EconMark (2019). Fiscal Incentive and Its Effectiveness in Attracting FDI. Mandiri Group Research, July.
  18. Hasnain A.N. (2012). The Potential Impact of Trade Liberalization and Fiscal Strictness on Households’ Welfare and Inequality in Pakistan. PhD Thesis, Economic Studies, School of Social and Environmental Sciences, University of Dundee.
  19. Indonesian Ministry of Environment and Forestry (2017). Laporan Invetarisasi GRK dan Monitoring, Pelaporan dan Verifikasi. Directorate General of Climate Change Mitigation. Directorate Inventory of Greenhouse Gas Emission and Monitoring, Report and Verification.
  20. Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories. -- Available on: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html.
  21. International Renewable Energy Agency (IRENA) (2017). Geothermal Power: Technology Brief. -- Available on: http://www.irena.org.
  22. Lackner M., Chen W.Y., Suzuki T. (2012). Introduction to Climate Change Mitigation. In: Chen W.Y., Seiner J., Suzuki T., and Lackner M (eds.). Handbook of Climate Change Mitigation. Springer Science+Business Media, LLC 2012. DOI: 10.1007/978-1-4419-7991-9
  23. Lüthi D. et al. (2008). High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453(7193): 379-382.
  24. Ministry of Energy and Mineral Resources (MEMR) (2018). Handbook of Energy and Economic Statistics of Indonesia (HEESI).
  25. Ministry of Energy and Mineral Resources (MEMR) (2019). General Planning of National Electricity 2019-2038. Keputusan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 143 K/20/MEM/2019.
  26. Ministry of Energy and Mineral Resources (MEMR) (2017). Kajian Penggunaan Faktor Emisi Lokal (Tier 2) dalam Inventarisasi GRK Sektor Energi. Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral. -- Available on: http://esdm.go.id.
  27. Ministry of Energy and Mineral Resources (MEMR) (2017). Potensi Panas Bumi Indonesia Jilid 1. Geothermal Directorate, Directorate General of New, Renewable, and Energy Conservation, MEMR. ISBN 978-602-50394-0-9, ISBN 978-602-50394-1-6. -- Available on: http://esdm.go.id.
  28. Ministry of National Development Planning/National Development Planning Agency (2019). Roadmap of SDGs Indonesia: A Highlight. -- Available on: https://www.unicef.org/indonesia/reports/roadmap-sdgs-indonesia.
  29. Ministry of National Development Planning/National Development Planning Agency (2014). Geothermal Handbook for Indonesia. National Documents. Directorate for Energy Resources, Mineral and Mining.
  30. McDonald S., and Thierfelder K. (2008). Deriving a Global Social Accounting Matrix from GTAP Versions 5 and 6 Data. GTAP Technical Paper No. 22. -- Available on: http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=1645.
  31. Moore C. (2012). Climate Change Legislation: Current Developments and Emerging Trends. In: Chen W.Y., Seiner J., Suzuki T., and Lackner M (eds.). Handbook of Climate Change Mitigation. Springer Science+Business Media, LLC 2012. DOI: 10.1007/978-1-4419-7991-9
  32. Nurdianto D.A., and Resosudarmo B.P. (2016). The Economy-wide Impact of a Uniform Carbon Tax in ASEAN. Journal of Southeast Asian Economies, 33(1): 1-21.
  33. Orlov A. (2012). Carbon Taxation in Russia: Prospects for a Double Dividend and Improved Energy Efficiency. Phd Thesis, Universität Hohenheim.
  34. Pambudi N.A. (2017). Geothermal Power Generation in Indonesia, A Country Within the Ring of Fire: Current Status, Future Development and Policy. Renewable and Sustainable Energy Reviews.
  35. PEACE (2007). Indonesia and Climate Change: Current Status and Policies. -- Available on: https://siteresources.worldbank.org/INTINDONESIA/Resources/Environment/ClimateChange_Full_EN.pdf.
  36. Perusahaan Listrik Negara (PLN) (2018). Statistik PLN. No. 03101 – 190615.
  37. Pittel K., Rubbelke D., Altemeyer-Barscher M. (2012). Internationals Efforts to Combat Global Warming. In: Chen W.Y., Seiner J., Suzuki T., and Lackner M. (eds.). Handbook of Climate Change Mitigation. Springer Science+Business Media, LLC 2012. DOI: 10.1007/978-1-4419-7991-9
  38. Sener A.C. Dorp J.R.V., Keith J.D. (2009). Perspectives on the Economics of Geothermal Power. GRC Transactions, 33.
  39. Sigfusson B., and Ulhlein A. (2015). 2015 JRC Geothermal Energy Status Report. EUR 27623 EN.
  40. Wing I.S. (2008). The Synthesis of Bottom-Up and Top-Down Approaches to Climate Policy Modelling: Electric Power Technology Detail in a Social Accounting Framework. Energy Economics, 30: 547-573.
  41. Wijaya A., Chrysolite H., GE M., Wibowo C.K., Pradana A., Utami A.F., and Austin K. (2017). How Can Indonesia Achieve Its Climate Change Mitigation Goal? An Analysis of Potential Emissions Reductions from Energy and Land-Use Policies. Working Paper. World Resources Institute.
  42. World Resources Institute (2015). CAIT Climate Data Explorer (Database). -- Available online at: http://cait.wri.org.
  43. WWF (2012). Igniting the Ring of Fire: A Vision for Developing Indonesia’s Geothermal Power. WWF Report.
  44. Government Regulation Number 62 Year 2008 (2008). Perubahan atas Peraturan Pemerintah Nomor 1 tahun 2007 tentang Fasilitas Pajak Penghasilan untuk Penanaman Modal di Bidang-bidang Usaha Tertentu dan/atau di Daerah-daerah Tertentu.
  45. Presidential Regulation Number 22 Year 2017 (2017). The General Planning of National Energy.
  46. Regulation of Ministry of Finance Number 177 Year 2007 (2007). Pembebasan Bea Masuk atas Impor Barang untuk Kegiatan Usaha Hulu Minyak dan Gas Bumi serta Panas Bumi.
  47. Regulation of Ministry of Finance Number 22 Year 2011 (2011). Pajak Pertambahan Nilai Ditanggung Pemerintah atas Impor Barang untuk Kegiatan Usaha Hulu Eksplorasi Minyak dan Gas Bumi serta Kegiatan Usaha Eksplorasi Panas Bumi untuk Tahun Anggaran 2011.

  • Meeting investors’ demands in PPP project to improve enthusiasm for participating in green and low-carbon Jiaqi Liu, Peifen He, Qiuling Meng, in Economic Research-Ekonomska Istraživanja 2167224/2023
    DOI: 10.1080/1331677X.2023.2167224
  • System dynamics modeling of leveraging geothermal potential in Indonesia towards emission reduction effort: A case study in Indonesia state-owned energy enterprise Dhamar Yudho Aji, Utomo Sarjono Putro, in Renewable Energy Focus 100612/2024 pp.100612
    DOI: 10.1016/j.ref.2024.100612

Herbert Wibert, Victor Hasudungana, Sulthon Sjahril Sabaruddinb, Incentive-based policy to promote the production of geothermal power from carbon tax scheme: A case of Indonesian CGE model in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 1/2020, pp 105-127, DOI: 10.3280/RISS2020-001007