LMDI decomposition analysis of CO2 emissions in Algeria during 2000-2019 and the role of energy policy in reducing emission

Journal title ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Author/s Maamar Traich, Amal Rahmane
Publishing Year 2023 Issue 2022/2
Language English Pages 24 P. 83-106 File size 525 KB
DOI 10.3280/EFE2022-002005
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

This study aims to determine the forces and factors driving the change in CO2 emissions in Algeria in 2000-2019. The analytical decomposition methodology used is the logarithmic mean Divisia index (LMDI), which enables us to know the role and magnitude of the impact of economic activity, structural changes, energy intensity, energy mix, and emission factors on the change in CO2 emissions. The results revealed that the total emissions are rising during the period 2000-2019 and that economic activity is the primary driving force for the increase in CO2 emissions in Algeria. Furthermore, the deterioration of energy efficiency and the trans- formation of the Algerian economy into an energy-intensive sector (the service sector at the expense of the industrial and agricultural sector), the energy intensity factor, and the economic structure factor did not help reduce the levels of CO2 emissions. Additionally, the energy mix factor contributed to a slight increase in emissions. In the context of following up on the im- plementation of the National Program for Renewable Energy and Energy Efficiency and its role in reducing the levels of CO2 emissions, it was found that the program failed to achieve its objectives during the first half of its implementation 2011-2020. These results indicate that public policymakers in Algeria should be strict in implementing the National Energy Program by 2030 by dissolving the conflict between economic growth and climate change policy

Keywords: CO2 emissions changes, LMDI method, energy policy

Jel codes: Q4, Q43, Q430

  1. Ang, B W. (2004). Decomposition analysis for policymaking in energy:: which is the preferred method?. Energy Policy, 32(9): 1131-1139. DOI: 10.1016/S0301-4215(03)00076-4
  2. Ang, B. W. (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867-871.
  3. Ang, B. W. (2015). LMDI decomposition approach: A guide for implementation. Energy Policy, 86: 233-238.
  4. Ang, B. W., Choi, Ki-Hong (1997). Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method. The Energy Journal, 18(3) -- http://www.jstor.org/stable/41322738.
  5. Ang, B. W., Liu, F. L. (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6): 537-548. DOI: 10.1016/S0360-5442(01)00022-6
  6. Ang, B. W., Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12): 1149-1176. DOI: 10.1016/S0360-5442(00)00039-6
  7. Ayompe, L. M., Davis, S. J., Egoh, B. N. (2020). Trends and drivers of African fossil fuel CO2 emissions 1990-2017, Environmental Research Letters, 15(12): 124039.
  8. Belaid, F., Youssef, M. (2017). Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria. Energy Policy, 112: 277-287.
  9. Boughedaoui, M. (2014). Analyse des sources de financement de l’efficacité énergetique et des énergies renouvelables dans les collectivités locales en Algérie.
  10. Bouznit, M. (2016). CO2 emission and economic growth in Algeria. Energy Policy, 96: 93-104.
  11. Canadell, G. J., Raupach, M. R., Houghton, R. A. (2009). Anthropogenic CO2 emissions in Africa. Biogeosciences, 6(3): 463-468.
  12. de Boer, P., Rodrigues, J. F. D. (2020). Decomposition analysis: when to use which method?Economic Systems Research, 32(1): 1-28. DOI: 10.1080/09535314.2019.1652571
  13. Emodi, N. V., Boo, K. J. (2015). Decomposition Analysis of CO2 Emissions from Electricity Generation in Nigeria. International Journal of Energy Economics and Policy, 5(2): 565-573. -- https://www.econjournals.com/index.php/ijeep/article/view/1075.
  14. Engo, J. (2021). Driving forces and decoupling indicators for carbon emissions from the industrial sector in Egypt, Morocco, Algeria, and Tunisia. Environmental Science and Pollution Research, 28: 14329-14342.
  15. Friedrichs, J.. Inderwildi, O.R. (2013). The carbon curse: are fuel rich countries doomed to high CO2 intensities?. Energy Policy, 62: 356-1365.
  16. Grigoli, F., Herman, A., Swiston, A. (2017). A Crude Shock: Explaining the Impact of the 2014-16 Oil. IMF Working Papers, no. 17/160: 26.
  17. Henry, C. M. (2004). Algeria’s Agonies: Oil rent effects in a bunker state. The Journal of North African Studies, 9(2): 68-81. DOI: 10.1080/1362938042000323347
  18. Hou, Z., Keane, J., Kennan, J., Willem, D. (2015). The oil price shock of 2014. Technical report, Overseas Development Institute, London.
  19. IEA (2017). Key world energy statistics. International Energy Agency.
  20. INDC (2015). Intended Nationally Determined Contribution INDC – Algeria. UNFCCC. IPCC (2006). Guidelines for National Greenhouse Gas Inventories.
  21. IPCC (2007a). Mitigation of climate change. Intergovernmental Panel on Climate Change. IPCC (2007b). Mitigation of climate change. Intergovernmental Panel on Climate Change. IPCC (2018). Global Warming of 1.5 ºC. Intergovernmental Panel on Climate Change.
  22. IRENA (2021). International Renewable Energy Agency. -- https://irena.org/Statistics/View- Data-by-Topic/Capacity-and-Generation/Country-Rankings (accès le 2021).
  23. Jamil, F., Shahzad, A. (2017). Decomposition Analysis of Energy Consumption in Pakistan for the Period 1990-2013. Journal of Social Sciences and Humanities, 3(2): 152-177.
  24. Jbir, R., Zouari-Ghorbel, S (2011). Oil Price and Dutch Disease: The Case of Algeria. Energy Sources, Part B: Economics, Planning, and Policy, 6(3): 280-293.
  25. Jebli, M. B., Youssef, S. B. (2017). The role of The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological indicators, 74: 295-301.
  26. Kahia, M., Jebl, M. B., Belloumi, M. (2019). Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean Technologies and Environmental Policy, 12(4): 871-885.
  27. khan, A., Jamil, F., khan, N. H. (2019). Décomposition analysis of carbon doixide emissions in pakistan. SN Appl. Sci, 1-1012.
  28. MEM (2021). Bilan Énergétique National du secteur. Ministry of Energy and Mines. -- https://www.energy.gov.dz/?article=bilan-energetique-national-du-secteur (accessed 2021).
  29. Ministry of Energy and Mines (2021). -- https://www.energy.gov.dz/?rubrique=energies- renouvelables-et-efficacite-energetique (accessed 11 02, 2021).
  30. Mousavi B., Lopez, N. S. A., Bionab, J. B. M. (2017). Driving forces of Iran’s CO2 emissions from energy consumption:An LMDI decomposition approach. Applied Energy, 206: 804- 814.
  31. Quadrelli, R., Peterson, S. (2007). The energy-climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11): 5938-5952.
  32. Sathiendrakumar, R. (2003). Greenhouse emission reduction and sustainable development. International Journal of Social Economics, 30(12): 233-1248. DOI: 10.1108/03068290310500643
  33. Shahbaz, M., Solarin, S. A., Bibi, S. (2015). Does energy intensity contribute to CO2 emissions? A trivariate analysis in selected African countries. Ecological indicators, 50: 215-224.
  34. Shyamal, P., Bhattacharya, R. N. (2004). CO2 emission from energy use in India: a decomposition analysis. Energy Policy, 32(5): 585-593. DOI: 10.1016/S0301-4215(02)00311-7
  35. Tunç, G. I., Türüt-Aşık, S., Akbostancı, E. (2009). A decomposition analysis of CO2 emissions from energy use. Energy Policy, 37(11): 4689-4699.
  36. UFCCC (2005). Kyoto Protocol to the United Nations Framework. UFCCC (2021). Algeria – High-level Segment Statement COP 26. UNFCCC (1992). United Nations Framework Convention.
  37. Wang, J., Hu, M., Rodrigues, J. F. D. (2018). An empirical spatiotemporal decomposition analysis of carbon intensity in China’s industrial sector. Journal of Cleaner Production, 195: 133-144.
  38. WorldBank (2021). Algeria Worldbank Data. -- https://data.worldbank.org/country/DZ (accès le 2021).
  39. Xu, X. Y., Ang, B. W. (2013). Decomposition analysis applied to CO2 emission studies.
  40. Ecological Economics, 93(c): 313-329.
  41. Zahang, M., Dai, S., Song, Y. (2015). Decomposition analysis of energy-related CO2 emissions in South Africa. Journal of Energy in Southern Africa, 26(1): 67-73.

  • The non-energy industrial sector: an analysis of Algeria's energy-related CO2 emissions (2006-2021) Sarra Robei, Noureddine Settou, in STUDIES IN ENGINEERING AND EXACT SCIENCES /2024 pp.e11735
    DOI: 10.54021/seesv5n2-671
  • Financial levers and carbon emissions: analysing the debt-emission nexus in the European Union Cristian Stanciu, Narcis Eduard Mitu, in Applied Economics /2024 pp.1
    DOI: 10.1080/00036846.2024.2393901

Maamar Traich, Amal Rahmane, LMDI decomposition analysis of CO2 emissions in Algeria during 2000-2019 and the role of energy policy in reducing emission in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 2/2022, pp 83-106, DOI: 10.3280/EFE2022-002005