Performance analysis of standalone photovoltaic power generation in different load conditions in India

Autori/Curatori Avijit Karmakar, Pradip Kumar Sadhu, Soumya Das
Anno di pubblicazione 2021 Fascicolo 2021/1 Lingua Inglese
Numero pagine 22 P. 121-142 Dimensione file 315 KB
DOI 10.3280/EFE2021-001007
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

The conversion of solar energy into electrical energy by the design of energy-efficient way is the key objective of this paper, which can be used as a main source of power for the main building of Polytechnic Institute to meet its daily energy requirement by replacing the all exist-ing fluorescent lighting loads to LEDs. The main purpose to choose a standalone photovoltaic system is due to the huge power cut in this location. This institute is situated in a rural area of West Bengal, India. The use of photovoltaic power relies upon assortment factors, such as structuring, topographical area, climate condition, sun-based irradiance, and burden utilization. Point by point use examinations including the two sorts of lighting burden, establishment, and upkeep of sun-based PV framework amid its life expectancy has been completed. Moreover, the analysis has two dimensions, one is cost comparison and payback calculation with respect to energy by replacement of load and another is, though the initial investment is high in a off-grid photovoltaic system, during the life span of the scheme, it not only returns this capital in-vestment but also gains substantial dividend.

Keywords:cost analyses, energy efficiency, load management, pay back, standalone photo-voltaic, solar radiation

Jel codes:Q20, Q40, Q42

  1. [41] Dr, Navleen & Kaur, Navleen (2018). The Journey of Indian Rupee from 1947 to Present, 08: 19-33.
  2. [42] Irvine S. (2017) Solar Cells and Photovoltaics. In: Kasap S., Capper P. (eds). Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. DOI: 10.1007/978-3-319-48933-9_43
  3. [1] Shafiee, S., Topal, E. (2009). When will fossil fuel resrves be diminished?. Energy Policy, 181-189.
  4. [43] Mohammad, A., Abadi, M.M., Mohsen, M. (2015). Types of Solar Cells and Application. American Journal of Optics and Photonics, 3(5): 94-113.
  5. [44] “Kilowatt-hour”, Wikipedia, 2021-02-21, retrieved.
  6. [45] “Ampere hour”, Wikipedia, 2021-01-18, retrieved.
  7. [2] Sagar, D.A. (2005). Alleviating energy poverty for the world’s poor. Energy Policy, 1367-1372.
  8. [3] Guda. H.A., Aliyu, U.O. (2015). Design of a standalone photovoltaic system for a residence in Bauchi. International Journal of Engineering and Technology, 34-44.
  9. [4] Idowu, S.O., Olarenwaju, M.O., Ifedayo, I.O. (2013). Determinations of optimum tilt angles for solar collectors in low-latitude tropical region. International Journal of Energy and Environmental Engineering, 4: 29. DOI: 10.1186/2251-6832-4-29
  10. [5] Solanki, S.C. (2011). Solar Photovoltaic Fundamentals, Technologies and application, PHI learning Pvt.
  11. [6] Seetharaman, V., Manoharan, P.S. (2017). An efficient soft switching buck converter scheme for charging lead acid battery from PV source. Journal of Renewable and Sustainable Energy. DOI: 10.1063/1.4984620
  12. [7] Ravishankar, K.H., Aithal, R.S., Singh, P.K., Ashis, K.S., Danak, A.R. (2008). Modelling of Photovoltaic Array and Maximum Power Point Tracker using ANN. JES Regular paper.
  13. [8] Jasser, A.A., (2010). A Stand-Alone Photovoltaic System, Case Study: A Residence in Gaza. Journal of Applied Sciences in Environmental Sanitation, 81-92.
  14. [9] Guda, H.A. (2012). Improved Modeling and Simulation of a Stand-Alone Experimental Photovoltaic Array for Different Climatic Conditions of Bauchi Locality, Unpublished doctoral dissertation, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
  15. [10] Shukla, K., Sudhakar, A.K., Baredar, P. (2016). Design, simulation and economic analysis of standalone roof top solar PV system in India. Solar Energy, 437-449.
  16. [11] Shukla, K.N., Sudhakar, K., Rangnekar, S. (2015). Estimation and Validation of Solar Radiation Incident on Horizontal and Tilted Surface at Bhopal, Madhya Pradesh, India. American-Eurasian J. Agric. & Environ, 129-139.
  17. [12] Talavera, D.L., Munoz-Cerón, E., Casa, J. de la., Ortega, M. J., Almonacid, G. (2011). Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain. Renewable and Sustainable Energy Reviews, 4310-4319.
  18. [13] Huld, T., Amillo, A.M.G. (2015). Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum. Energies, 8: 5159-5181.
  19. [14] Rajput, D.S., Sudhakar, K. (2013). Effect Of Dust On The Performance Of Solar PV Panel. IJCRGG, 5: 1083-1086.
  20. [15] Kirmani, S., Jamil, M., Rizwan, M. (2011). Optimal Placement of SPV Based DG System for Loss Reduction in Radial Distribution Network Using Heuristic Search Strategies. Proceedings of IEEE 2nd International Power and Energy Conference, Bhubaneswar. 1691-1695. DOI: 10.1109/ICEAS.2011.6147171
  21. [16] Jamil, M., Kirmani, S., Chatterjee, H. (2013). Techno-Economic Viability of Three Different Energy- Supplying Options for Remote Area Electrification in India. International Journal of Sustainable Energy. 470-482. DOI: 10.1080/14786451.2013.769989
  22. [17] Kolhe, M., Kolhea, S., Joshi, J.C. (2002). Economi Viability of Stand-Alone Solar Photovoltaic System in Comparison with Diesel-Powered System for India. Energy Economics, 155-165.
  23. [18] Alamsyah, T.M.I., Sopian, K., Shahrir, A. (2003). In techno-economics analysis of a photovoltaic system to provide electricity for a household in Malaysia. In: Proceedings of the International Symposium on Renewable Energy: Environment Protection & Energy Solution for Sustainable Development, Kuala Lumpur, 387-396.
  24. [19] Dunlop, E.D., Halton, D. (2005). The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Prog. Photovolt. Res. Appl., 53-64.
  25. [20] Yadav, S., Sudhakar, K. (2015) Different domestic designs of solar stills: a review. Renew, Sustain. Energy Rev., 718-731.
  26. [21] Pal, A.M., Das, S. (2015). Designing of a standalone photovoltaic system for a Residential Building in Gurgaon, India. Sustain. Energy, 14-24.
  27. [22] Šúri, M., Huld, T. A., Dunlop, E.D., Ossenbrink, H.A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy, 1295-1305.
  28. [23] Lurwan, S.M., Mariun, N., Hizam, H., Radzi, M.A.M., Zakaria, A. (2014). Predicting power output of photovoltaic systems with solar radiation model. IEEE, 304-308.
  29. [24] Kim, H., Baek, S., Park, E., Chang, H.J. (2014). Optimal green energy management in Jeju, South Korea-On-grid and off-grid electrification. Renew. Energy: 123-133.
  30. [25] Koo, C., Hong, T., Lee, M., Park, H. (2014). Development of a New Energy Efficiency Rating System for the Existing Residential Buildings. Energy Policy, 218-231.
  31. [26] Wu, S.T., Chen, Y.S. (2015). The social, economic, and environmental impacts of casino gambling on the residents of Macau and Singapore. Tourism Manag., 285-298.
  32. [27] Nafeh, A.A. (2009). Design and Economic Analysis of a stand-alone PV system to electrify a remote area household in Egypt. Open Renewable Energy Journal, 33-37. DOI: 10.2174/1876387100902010033
  33. [28] Tao, M., Hongxing, Y., Lin, L. (2013). Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong. Applied Energy, 112: 663-672.
  34. [29] Tao, M., Hongxing, Y., Lin, L. (2014). A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Applied Energy, 121: 149-158.
  35. [30] Bataineh, K., Dalalah, D. (2012). Optimal Configuration for Design of Stand-Alone PV System. Scientific Research, Smart Grid and Renewable Energy, 3: 139-147.
  36. [31] GSES India sustainable energy Pvt. Ltd. (2014). Standalone Photovoltaic system design & installation. Second edition September
  37. [32] Zeman, M. (2014). Photovoltaic Systems. TU Delft Open Course Ware. Retrieved, October 20, 2014, from October 20, 2014. from: -- ocw/courses/SolarCells/res00029/CH9_Photovoltaic_systems.pdf.
  38. [33] Leonics (2014). How to Design Solar PV System. Retrieved from: -- support/article2_12j/article s2_12j_en.php.
  39. [34] Manju, B.S., Ramaprabha, R., Mathur, B.L. (2011). Modelling and control of standalone solar photovoltaic charging system. IEEE, 78-85.
  40. [35] Li, H., Ma, W., Lian, Y. and Wang, X. (2010). Estimating daily global solar radiation by day of year in China. Appl. Energy, 87: 3011-3017.
  41. [36] Pandey, K.C., Katiyar, A.K. (2009). A note on diffuse solar radiation on a tilted surface. Energy, 34: 1764-1769.
  42. [37] Catelani, M., Ciani, L., Cristaldi, L., Faifer, M., Lazzaroni, M., Rossi, M. (2012). Characterization of Photovoltaic panels: the effect of dust. IEEE.
  43. [38] Huld, T., Pascua, I.P. (2015). Spatial downscaling of 2-meter air temperature using operational forecast data. Energies, 8: 2381-2411.
  44. [39] “Average Sunshine a Year in India, 1961-1990”. Current Results. Retrieved 9 November 2018.
  45. [40] Chisholm, Hugh, ed. (1911). “Crore”. Encyclopædia Britannica (11th ed.). Cambridge University Press.

Avijit Karmakar, Pradip Kumar Sadhu, Soumya Das, Performance analysis of standalone photovoltaic power generation in different load conditions in India in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 1/2021, pp 121-142, DOI: 10.3280/EFE2021-001007