Sustainable technologies for greenhouse systems

Journal title RIVISTA DI STUDI SULLA SOSTENIBILITA'
Author/s Emanuela Sirica, Felicia Cavaleri, Carlo Greco, Angeliki Kavga, Orlando Santo, Rigoglioso Domenico
Publishing Year 2020 Issue 2019/2 Suppl.
Language English Pages 18 P. 143-160 File size 191 KB
DOI 10.3280/RISS2019-002-S1010
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The greenhouse cultivation system in European countries represents one of the most energy-intensive sectors in the agriculture and agro-industry sector. In this regard, renewable energies represent an innovative solution to reduce energy costs and environmental impacts. Both, the energy demands and the economic aspects are analyzed with regard to the main energy users, i.e.: heating and cooling systems, lighting and pumping for irrigation. This work considers the use of solar photovoltaic and thermal energy. The use of semi-closed greenhouses is also considered.

Keywords: Photovoltaic greenhouse, closed greenhouse system, energy efficiency, renewable energy, solar energy, sustainable agriculture.

  1. Awani S., Chargui R., Kooli S., Farhat A. and Guizani A. (2015). Performance of the coupling of the flat plate collector and a heat pump system associated with a vertical heat exchanger for heating of the two types of greenhouses system. Energy Convers Manag, 103: 266-275.
  2. Bailey B. (2006). Natural and mechanical greenhouse climate control. Acta Hort., 710.
  3. Barkhouse D.A.R., Gunawan O., Gokmen T., Todorov T.K. and Mitzi D.B. (2012). Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog Photovolt: Res Appl, 20: 6-11.
  4. Boxwell M. (2015). Solar electricity handbook – 2015 edition: a simple, practical guide to solar energy – designing and installing solar PV systems. Coventry: Greenstream Publishing.
  5. Campiotti C., Bibbiani C., Alonzo G., Balducchi R., Dondi F., Catanese V.F., Genovese N. and Incrocci L. (2008). Photovoltaic as sustainable energy for greenhouse and closed plant production system. Acta Hort, 797: 373-378.
  6. Campiotti C., Bibbiani C., Dondi F., Scoccianti M. and Viola C. (2011). Energy efficiency and photovoltaic solar for greenhouse agriculture. Journal of Sustainable Energy, March, II(1).
  7. Campiotti C., Viola C., Alonzo G., Bibbiani C., Giagnacovo G., Scoccianti M. and
  8. Tumminelli G. (2012). Sustainable greenhouse horticulture in Europe. Journal of Sustainable Energy, 3(3), September.
  9. Castilla N and Hernandez J. (2007). Greenhouse technological packages for high quality production. Acta Hort, 761: 285-297.
  10. Chae Y.T., Kim J., Park H. and Shin B. (2014). Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl Energy, 129: 217-227.
  11. Chow T.T. (2010). A review on photovoltaic/thermal hybrid solar technology. Appl Energy, 87: 365-379.
  12. Cuce E. and Bali T. (2010). Improving performance parameters of silicon solar cells using air cooling. In: Fifth International Ege Energy Symposium and Exhibition. Denizli, Turkey.
  13. Delgado-Torres A.M. (2009). Solar thermal heat engines for water pumping: an update. Renewable and Sustainable Energy Reviews, 13: 462-472. Dieleman J.A., Marcelis L.F.M., Elings A., Dueck T.A. and Meinen E. (2006). Energy saving in greenhouses: optimal use of climate conditions and crop management. Acta Hort., 718.
  14. Eltawil M.A. and Omara Z.M. (2014). Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination, 349: 1-9.
  15. Fabrizio E. (2012). Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy Build, 53: 57-63.
  16. Glasnovic Z. and Margeta J. (2011). Vision of total renewable electricity scenario. Renewable and Sustainable Energy Reviews, 15: 1873-1884.
  17. Green M.A., Emery K., Hishikawa Y., Warta W. and Dunlop E.D. (2013). Solar cell efficiency tables. Prog Photovolt: Res Appl, 42: 827-837.
  18. Hwang Y., Radermacher R., Al Alili A. and Kubo I. (2008). Review of solar cooling technologies. HVAC & R Res, 14(3): 507-528.
  19. Jang I.B., Lee D.Y., Yu J., Park H.W., Mo H.S., Park K.C., Hyun D.Y., Lee E.H., Kim K.H. and Oh C.S. (2015). Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse. J Ginseng Res, 39: 345-353.
  20. Kadowaki M., Yano A., Ishizu F., Tanaka T. and Noda S. (2012). Effects of greenhouse photovoltaic array shading on Welsh onion growth. Biosyst Eng, 111: 290-297.
  21. Kalkan N., Young E.A. and Celiktas A. (2012). Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renew. Sustain. Energy Rev, 16.
  22. Kamthania D., Nayak S. and Tiwari G.N. (2011). Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy Build, 43: 2274-2281.
  23. Kandilli C. (2013). Performance analysis of a novel concentrating photovoltaic combined system. Energy Convers Manag, 67: 186-196.
  24. Margeta J and Glasnovic Z. Exploitation of temporary water flow by hybrid PVhydroelectric plant. Renewable Energy, 36: 2268-2277.
  25. Meah K., Flecher S. and Ula S. (2008). Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews, 12: 472-487.
  26. Mehrpooya M., Hemmatabady H. and Ahmadi M.H. (2015). Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses. Energy Convers Manag, 97: 382-392.
  27. Parida B., Iniyan S. and Goic R. (2011). A review of solar photovoltaic technologies. Renew Sustain Energy Rev, 15: 1625-1636.
  28. Sethi V.P. and Sharma S.K. (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol Energy, 81: 1447-1459.
  29. Sethi V.P., Sumathy K., Lee C. and Pal D.S. (2013). Thermal modelling aspects of solar greenhouse microclimate control: a review on heating technologies. Sol Energy, 96: 56-82.
  30. Short T.H. (2004). Greenhouse structures and plant growth control systems for energy efficient crop production. Acta Hort., 633.
  31. Timilsina G.R, Kurdgelashvili L. and Narbel P.A. (2012). Solar energy: markets, economics and policies. Renew Sustain Energy Rev, 16: 449-465.
  32. Wu Y., Eames P., Mallick T. and Sabry M. (2012). Experimental characterisation of a Fresnel lens photovoltaic concentrating system. Sol Energy, 86: 430-440.

Emanuela Sirica, Felicia Cavaleri, Carlo Greco, Angeliki Kavga, Orlando Santo, Rigoglioso Domenico, Sustainable technologies for greenhouse systems in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 2 Suppl./2019, pp 143-160, DOI: 10.3280/RISS2019-002-S1010